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Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo 
signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ 
also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including 
cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, 
we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through 
the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with 
TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increas-
ing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications 
in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
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Introduction

YAP and TAZ—homologous transcriptional factors 
that play key roles in diverse biological processes

YAP (Yes-associated protein, also referred to as YAP1) and 
its smaller paralog TAZ (transcriptional co-activator with 
PDZ-binding motif) are transcriptional co-activator proteins 
that shuttle between the nucleus and cytoplasm, and regu-
late gene expression through binding with the TEAD (TEA/
ATTS domain) family of transcription factors (TEAD1–4) 

within the cell nucleus [1, 2]. Due to their close structural 
similarities, YAP and TAZ share overlapping roles in many 
key biological functions, but there are important differences. 
The major structural difference is that the smaller TAZ pro-
tein (43 kDa) lacks the SH3-BM proline-rich region and one 
WW domain present in the larger YAP protein (65 kDa) [1]. 
Two splice isoforms of the YAP protein have been identified 
YAP1-1 and YAP1-2, which differ by the presence of an 
additional WW domain (38 amino acids) on YAP1-2, com-
pared with YAP1-1 [1]. YAP and TAZ are ubiquitously co-
expressed in most mammalian tissues, though there are some 
exceptions. For example, YAP expression is absent in the 
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hippocampus and parathyroid gland [3], while the thymus 
and peripheral blood leukocytes lack TAZ expression [4].

Historically, YAP/TAZ were identified as the penulti-
mate effectors of the Hippo signaling pathway, which plays 
a crucial role in regulating tissue/organ size [5]. In recent 
years, many other functions of YAP/TAZ have been found, 
in development, cell proliferation, tissue regeneration and 
cell lineage fate determination [6], as well as in mechano-
sensing and mechanotransduction at cell-ECM/biomaterial 
interfaces [7]. These functions are all highly relevant to 
the fields of tissue engineering and regenerative medicine. 
Furthermore, YAP/TAZ also have roles in other biological 
processes and disease pathologies, most notably in tissue/
organ homeostasis and cancer metastasis [8].

In this review, we will give an overview of the various 
microenvironmental cues and signaling pathways that reg-
ulate YAP/TAZ activity, followed by a brief summary of 
YAP/TAZ interaction with TEAD and non-TEAD transcrip-
tion factors. Then, we will present a critical perspective, 
suggesting how our increasing knowledge of YAP/TAZ sign-
aling might advance therapeutic applications in the fields of 
biomaterials, tissue engineering, regenerative medicine and 
synthetic biology.

YAP/TAZ—key mediators of cell interaction 
with the microenvironment

YAP/TAZ mediate cellular responses to (i) biomechanical 
cues [9–17], (ii) extracellular ligands, such as growth factors 
and lipids [18–21], (iii) energy, osmotic and hypoxic stress 
[22–25], and (iv) inflammation and tissue injury [26–30].

Biomechanical cues refer to the mechanical forces gen-
erated upon cell interaction with the extracellular matrix 
(ECM) or substrata, cell-to-cell contact, and liquid shear 
forces encountered by cells (best exemplified by the endothe-
lial cells lining blood vessels). The responses to these cues 
mediated by YAP/TAZ in turn play key roles in orchestrating 
organ/tissue development and regulating homeostasis, and 
are therefore of interest in connection with the fabrication 
of improved biomimetic materials for tissue engineering 
applications.

Mechanosensing of ECM/substrata stiffness is mediated 
primarily by focal adhesions (FAs), which influence cell 
adhesion, spreading, and remodeling of the actin cytoskel-
eton via RhoA activity [9–11]. The FAs in turn modulate 
Hippo-dependent and independent signaling pathways that 
control cell proliferation and differentiation through YAP/
TAZ. Generally, with a stiffer substrate, there is increased 
cytosol to nuclear translocation of YAP/TAZ (Fig. 2), which 
can be attributed to increased number of FAs per cell, as well 
as increased tensile force on the stress fibers connecting the 
FAs that cause the cell to spread over a larger surface area 
[10, 11]. In the case of bone marrow-derived mesenchymal 

stem cells (BMSCs), increased YAP/TAZ activation on a 
stiff substrate leads to enhancement of osteogenic differen-
tiation [11].

Another biomechanical cue is cell density. With increas-
ing cell density, there is increased cell-to-cell contact, and 
the cell shape changes from a more flattened to a more 
rounded geometry, with a consequent reduction in FAs, 
but an increase in the numbers of tight junctions (TJs) and 
adherens junctions (AJs) between adjacent cells [12, 13]. 
This inhibits cytosolic to nuclear translocation of YAP/
TAZ through both the Hippo signaling pathway and Hippo-
independent mechanisms. Generally, a decrease in YAP/
TAZ nuclear-to-cytoplasmic ratio impedes cell prolifera-
tion, resulting in the commonly observed phenomenon of 
contact inhibition of cell proliferation [12, 13].

Cellular response to shear stress is also mediated by YAP/
TAZ [14–17]. Studies with a microfluidic perfusion device 
demonstrated that exposure to shear force enhances YAP 
translocation to the cell nucleus, which in turn promotes 
osteogenesis and inhibits adipogenesis in mesenchymal stem 
cells (MSCs), but initiates dedifferentiation of chondrocytes 
[14]. In the case of endothelial cells, laminar (unidirectional) 
shear stress, as is normally encountered in healthy blood 
vessels, suppresses YAP/TAZ activation, whereas oscilla-
tory (disturbed or turbulent) shear stress, which is associated 
with choked blood vessels, enhances YAP/TAZ activation 
[15–17]. These findings have major implications for the 
pathogenesis of arteriosclerosis [15–17].

The signaling pathways of some cell-surface receptors of 
extracellular ligands, such as lipids, hormones and growth 
factors, can also activate YAP/TAZ through interactions 
with the Hippo signaling pathway (Fig. 1). These ligands 
include lysophosphatidic acid (LPA), sphingosine 1-phos-
phate (S1P), glucagon and epinephrine, which act through 
G protein-coupled receptors (GPCRs) [18, 19], as well as 
the receptor tyrosine kinases (RTKs) for nerve growth factor 
(NGF) and epidermal growth factor (EGF) [20, 21]. 

Cellular responses to microenvironmental stress fac-
tors have also been linked to YAP/TAZ via interaction of 
various cytosolic factors with the Hippo signaling pathway 
(Fig. 1). Energy stress induced by inhibitors of glucose or 
ATP metabolism decreases YAP/TAZ activation through 
the Hippo signaling pathway via AMPK (AMP-activated 
protein kinase) [22, 23]. It was reported that osmotic stress 
promotes YAP translocation to cell nuclei via Nemo-like 
kinase (NLK)-mediated phosphorylation of the Ser128 
residue [24], while hypoxic stress activates YAP through 
the action of SIAH2 ubiquitin E3 on the Hippo signaling 
pathway [25].

Pro-inflammatory cytokines, such as prostaglandin E2 
and tumor necrosis factor alpha (TNF-α), also activate YAP/
TAZ, but the underlying mechanisms remain unclear [26, 
27]. YAP/TAZ are also activated in response to liver, skin, 
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myocardial and intestinal epithelium injury [28–30], and 
facilitate healing by enhancing cell proliferation. However, 
the underlying mechanisms through which YAP/TAZ are 
activated upon tissue injury are still largely uncharacterized.

Regulatory mechanisms of YAP/TAZ activity

Regulation of YAP/TAZ activity 
through the canonical Hippo signaling pathway

Core components of the canonical Hippo signaling pathway

The canonical Hippo signaling pathway is highly conserved 
in different species ranging from fruitflies to mammals [31], 

and was so named because deletion mutants in Drosophila 
melanogaster led to loss of control of tissue/organ size, 
which in turn resulted in a superficial resemblance to the 
hippopotamus. The core of the canonical Hippo signal-
ing pathway (Fig. 1) is a kinase cascade that in mammals 
consists of the MST1/2 complex (MST1 and MST2, also 
known as STK4 and STK3, respectively), LATS1/2 com-
plex (LATS1 and LATS2, large tumor suppressor kinases 
1 and 2, respectively), the adaptor proteins SAV1 (Salvador 
1), MOB1A and MOB1B, the transcriptional co-activators 
YAP/TAZ, the 14-3-3 protein that binds only to phosphoryl-
ated YAP/TAZ, and finally the TEAD transcription factors 
(TEAD1–TEAD4) that activate the transcription of specific 
target genes (Table 1) upon binding to unphosphorylated 
YAP/TAZ. 

Fig. 1  The core of the canonical Hippo signaling pathway is a kinase 
cascade that in mammals comprises the MST1/2 complex (MST1 
& MST2, also known as STK4 & STK3, respectively), LATS1/2 
complex (LATS1 & LATS2, large tumour supressor kinase 1 & 2, 
respectively), the adaptor proteins: SAV1 (Salvador 1), MOB1A 
and MOB1B, the transcriptional co-activators YAP/TAZ, the 14-3-3 
protein that binds only to phosphorylated YAP/TAZ, and finally the 
TEAD transcription factors (TEAD1–TEAD4) that activate the tran-
scription of specific genes upon binding to unphosphorylated YAP/
TAZ. The Hippo signaling pathway can be initiated upon phospho-
rylation of MST1/2 or LATS1/2 by various upstream signaling 
mechanisms that may involve Focal adhesions (FAs), G protein-cou-
pled receptors (GPCRs), Receptor tyrosine kinases (RTKs), Adhe-
rens junctions (AJs), Tight junctions (TJs), Spectrin cytoskeleton, 
Membrane polarity complexes (i.e. Crumbs, Scribble, aPKC-PAR) 
and various cytosolic signaling molecules (i.e. PP2A, TAOK1/2/3, 
MAPK, AMPK, and PTPN14). The activated MST1/2 complex 
phosphorylates the adaptor proteins SAV1, MOB1A and MOB1B, 
which in turn assist the MST1/2 complex in recruiting, phosphoryl-

ating and activating the LATS1/2 complex. Nevertheless, it must be 
noted that the LATS1/2 complex is not necessarily activated only 
by the MST1/2 complex, but can also be phosphorylated and acti-
vated by other upstream signaling mechanisms. Upon activation, the 
LATS1/2 complex phosphorylates YAP/TAZ, which then binds to the 
14-3-3 protein. This in turn prevents the phosphorylated YAP/TAZ 
from being translocated into the cell nuclei, and it is then targeted for 
proteasomal degradation through further phosphorylation by casein 
kinase 1δ/1ε and ubiquitination by the SCF β-TRCP E3 ubiquitin 
ligase. By contrast, when MST1/2 and LATS1/2 are not activated, 
the unphosphorylated YAP/TAZ remains active and is translocated to 
the cell nuclei where it binds TEAD transcription factors (TEAD1 to 
TEAD4) to activate the transcription of specific output genes, which 
may be involved in cell lineage fate, cell proliferation, cell migra-
tion, anti-apoptosis, cancer metastasis, cytoskeletal modification, 
‘stemness’ maintenance and dedifferentiation. VGLL4 acts as a com-
petitive inhibitor of YAP/TAZ binding to TEAD, resulting in repres-
sion of target gene expression
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The Hippo signaling pathway is initiated upon activation 
(phosphorylation) of MST1/2 by various upstream signaling 
factors (Fig. 1). The activated MST1/2 complex phospho-
rylates the adaptor proteins SAV1, MOB1A and MOB1B, 
which in turn assist the MST1/2 complex in recruiting, phos-
phorylating and activating the LATS1/LATS2 complex. It 
should be noted that the LATS1/LATS2 complex is not 
necessarily activated only by the MST1/2 complex, but can 
also be phosphorylated and activated by a whole multitude 
of cytosolic factors that are implicated in other signaling 
pathways. Hence, there is a rather high degree of overlap 
with other signaling pathways.

Upon activation, the LATS1/LATS2 complex phospho-
rylates YAP/TAZ, which then bind to the 14-3-3 protein. 
This in turn prevents the phosphorylated YAP/TAZ from 
being translocated to the cell nucleus, and they are then tar-
geted for proteasomal degradation through further phospho-
rylation by casein kinase 1δ/1ε and ubiquitination by the 
SCF β-TRCP E3 ubiquitin ligase complex [32]. In contrast, 
when MST1/2 and LATS1/2 are not activated, the unphos-
phorylated YAP/TAZ are translocated to the cell nucleus, 
where they bind to TEAD transcription factors to activate 
the transcription of specific target genes (Table 1).

Hence, when the core Hippo signaling pathway is 
switched ‘ON’, YAP/TAZ are inactivated through phos-
phorylation, and their translocation to the cell nucleus 
is blocked. On the other hand, when Hippo signaling is 
switched ‘OFF’, the non-phosphorylated YAP/TAZ can be 
translocated to the cell nucleus, where they bind to TEAD 
transcription factors and activate the transcription of specific 

target genes (Table 1). Nevertheless, it is important to note 
that in reality, the Hippo signaling pathway does not behave 
digitally only in the ‘ON’ or ‘OFF’ mode. Depending on the 
relative activities of MST1/2, LATS1/2, and other cytosolic 
factors involved in the activation/deactivation of these two 
complexes (Fig. 1), YAP/TAZ localization may be partially 
cytoplasmic or partially nuclear. The situation is further 
complicated by the existence of competitive inhibitors of 
YAP/TAZ binding to TEAD, such as VGLL4 [33], which 
represses target gene expression. Hence, depending on the 
cell type and biological context, variations in the relative 
activity of the core Hippo signaling cascade and YAP/TAZ 
may arise from differing balance in the activity/or quan-
tity of the various regulatory kinases, which can function 
in a complementary manner and which may substitute each 
other. This in turn would have critical implications for the 
practical implementation and data interpretation of YAP/
TAZ assays.

YAP/TAZ regulation by focal adhesions through the Hippo 
signaling pathway

Focal adhesions (FAs) are integrin-containing macromo-
lecular assemblies that form a mechanical linkage between 
the extracellular matrix and cytoskeleton via intracellular 
actin bundles (stress fibers) [7, 9]. As a consequence of 
their structural role, FAs are the primary conduits for cel-
lular sensing of ECM/substrata stiffness [7, 9], in addition to 
being sensors of cell density [34]. At low cell density, cells 
tend to be more spread out on the substrata surface and have 

Table 1  Examples of YAP/TAZ effector genes that are activated via TEAD

Function Genes activated by YAP/TAZ via TEAD Key references

Stemness/Dedifferentiation C-Myc Schutte et al. [114]
Sox2, Oct4 & Nanog Lian et al. [115]

Anti-apoptosis/cell survival CTGF, ANKRD, BCL2 & CYR61 Wang et al. [116]
MCL-1 Tian et al. [117]

Cell lineage fate decisions/differentiation Cdx2 Yagi et al. [118]
MSTN & MyoG Lv et al. [119]
GATA3 Ralston et al. [120]
Myf5 Ribas et al. [121]

Cell migration CDH2, MACF1, ABL2 & TNS3 Liu et al. [122]
Cytoskeleton/morphology ARHGAP29 Qiao et al. [123]
Cell proliferation/Cell cycle/Tumorigenesis MCM3, MCM6 & Cdk1 Ehmer et al. [124]

CDC6, CDT1, MCM4 & MCM10 Shen and Stanger [125]
MCM7 Lo Sardo et al. [126]
RHAMM Wang et al. [127]
CTGF Zhao et al. [128]
Cyr61 Zhang et al. [129].
AXL Xu et al. [130]
EDN1 Zhang et al. [131]
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higher numbers of FAs and associated stress fibers; whereas 
at high density, cells are more rounded and compact, with 
fewer FAs and associated stress fibers [34].

Different cell types, such as epithelial and mesenchymal 
cells, will exhibit different responses to stiff and soft sub-
strates, as well as to high and low cell densities which can be 
attributed to varying combinations and quantities of TEAD 
transcription factors present in different cell types that can 
potentially be activated by YAP/TAZ. Additionally, complex 
interaction and cross-talk between the core Hippo signaling 
cascade (Fig. 1) with other signaling pathways in different 
cell types, will undoubtedly lead to variations in the signal-
ing mechanisms by which ECM/substrata stiffness or cell 
density is transduced by FAs to modulate YAP/TAZ activity 
in different cell lineages.

Under conditions of stiff/fibronectin-rich ECM or low 
cell density, the high tensile force at the interface between 
FAs and stress fiber is detected by β1-integrin, lead-
ing to sequential phosphorylation of FAK (focal adhe-
sion kinase), SRC (steroid receptor co-activator) and/or 
P130 Cas via integrin-linked kinase (ILK) [35] (Fig. 2a). 
These subsequently trigger two distinct parallel sign-
aling pathways that regulate YAP activation: (i) the 
β1-integrin–FAK–SRC–PI3K–PDK1 signaling pathway that 
has been reported for epithelial cell types [36–38], and (ii) 
the β1-integrin-FAK-P130–Cas–Rac1–PAK-Merlin pathway 
that has been reported for mesenchymal cells [39] (Fig. 2a). 
Activation of either signaling pathway inhibits LATS1/2 
activity [36–39], thereby enhancing the nuclear transloca-
tion of YAP/TAZ and subsequent transcriptional activation 
of specific target genes through TEAD transcription factors 
(Table 1).

On the other hand, with high cell density or soft ECM/
synthetic substrata, cells do not spread much, and have fewer 
FAs per cell with reduced tensile force within the stress fib-
ers connected to FAs. As a result, the two aforementioned 
signaling pathways are not activated and there is no inhibi-
tion of LATS1/2, leading to increased phosphorylation of 
YAP/TAZ and sequestration within the cytosol. Currently, 
it is unclear whether in other cell types, these two afore-
mentioned signaling pathways emanating from FAs can act 
simultaneously in parallel to modulate YAP/TAZ activity.

YAP/TAZ regulation by adherens junctions (AJs) 
through the Hippo signaling pathway

AJs are macromolecular assemblies that mediate adhesion 
between cells, and mechanically link the actin cytoskel-
etons of adjacent cells [40]. They are primarily composed 
of proteins of the cadherin and catenin families, including 
α-catenin and β-catenin, which form mechanical linkages 

with bundles of actin fibers that connect directly to the 
cytoskeleton [40]. In addition, proteins that play a role in 
Hippo signaling bind with AJs. These include Merlin (also 
known as neurofibromin 2 or NF2), which binds directly 
to α-catenin [41], and KIBRA (kidney and brain protein) 
that binds to Merlin [42]. As a result of their structural 
function in cell-to-cell contact and mechanical linkage of 
the cytoskeleton, AJs can serve as a means by which cells 
sense their density and initiate contact inhibition of pro-
liferation [43].

Generally, the higher the cell density, the higher will be 
the number of AJs between adjacent cells. It is thought that 
Merlin (NF2) associated with AJs can bind and sequester 
LATS1/2 at the plasma membrane, which in turn facilitates 
LATS1/2 phosphorylation and activation by MST1/2 and 
MAP4Ks [44, 45]. Subsequent phosphorylation of YAP/
TAZ by the activated LATS1/2 prevents their transloca-
tion to the cell nucleus, thereby leading to inactivation of 
target genes, some of which are involved in cell prolifera-
tion. This accounts for contact inhibition of cell prolif-
eration at high cell densities. It has also been reported 
that homophilic dimerization of E-cadherin, which takes 
place during formation of AJs between adjacent epithelial 
cells, leads to phosphorylation of LATS1/2 and subsequent 
inhibition of YAP/TAZ translocation into the cell nucleus, 
thereby resulting in contact inhibition of proliferation 
[12]. The underlying mechanisms are unclear, but appear 
to involve NHERF  (Na+/H+ exchange regulatory factor), 
Merlin, Kibra and LATS1/2 [12].

Dutta et al. [46] reported yet another signaling mecha-
nism for contact inhibition of cell proliferation mediated 
by AJs. At high cell densities, increasing mechanical ten-
sion of actin stress fibers at AJs facilitates the recruitment 
of TRIP6 to AJs by vinculin, which subsequently binds to 
and phosphorylate LATS1/2, thereby inhibiting YAP/TAZ 
translocation into the cell nucleus [46].

Hence, increasing numbers of AJs and heightened 
mechanical tension within their associated actin stress fib-
ers exert an opposite effect in downregulating YAP/TAZ 
activity, as compared to signaling mechanisms associated 
with FAs that promote YAP/TAZ activation. This in turn 
can be attributed to the opposite but complementary roles 
of AJs and FAs in sensing cell density and effecting con-
tact inhibition of cell proliferation. AJs are localized at the 
interface between adjacent cells, whereas FAs by contrast, 
are localized at the interface between cells and ECM/sub-
strata. Consequently, with higher cell density, there is an 
increasing number of AJs, but decreasing number of FAs 
per cell, which therefore explains their antagonistic effects 
on regulating YAP/TAZ activity that effects contact inhibi-
tion of proliferation at high cell densities.



502 B. C. Heng et al.

1 3

YAP/TAZ regulation by tight junctions (TJs) 
through the Hippo signaling pathway

Tight junctions (TJs), also known as occluding junctions, are 
the closely associated areas of two adjacent cells where the 
membranes are joined together via strands of transmembrane 

proteins, such as claudins and occludins, to form an imper-
meable barrier. TJs are expressed exclusively by epithelial 
cells and function as a selective barrier to regulate the per-
meability of epithelial cell sheets to diffusing molecules. 
During differentiation and maturation of the epithelial cell, 
increasing numbers of TJs are formed between adjacent 

Fig. 2  The underlying mechanisms by which ECM/substrata stiff-
ness or cell density is transduced by FAs to effect YAP/TAZ activa-
tion or inactivation involve both the Hippo-signaling pathway (a), as 
well as a Hippo-independent mechanism (b). In the Hippo-dependent 
mechanism (a), high tensile force at the interface between FAs and 
stress fibers with stiff substrata is detected by β1-integrin, which leads 
to sequential phosphorylation of FAK (focal adhesion kinase), SRC 
(steroid receptor coactivator) and/or P130 Cas. In epithelial cells, 
phosphorylated SRC activates the PI3K–PDK1 signaling pathway. 
Upon activation, PDK1 associates with the core Hippo pathway-
kinase complex through the scaffold protein Salvador, leading to 
inhibtion of LATS1/2 phosphorylation of YAP, thereby enhancing 
its nuclear translocation [38]. On the other hand, in mesenchymal 
cells, the phosphorylated P130 Cas activates the Rac1–PAK-Merlin 
pathway. In the unphosphorylated state, Merlin normally interacts 
with both YAP and LATS1/2 via its C-terminal moiety and FERM 
domain, respectively, facilitating phosphorylation of both proteins. 
PAK1-mediated Merlin phosphorylation on Ser-518 reduces Merlin’s 
interactions with both LATS1/2 and YAP1, resulting in YAP dephos-

phorylation and nuclear translocation [39]. In the Hippo-independent 
mechanism (b), increased contractile force generated by the actino-
myosin stress fibers when cells encounter a stiff substrate, flattens the 
cell nuclei. This in turn increases the curvature of the lateral part of 
the nuclear membrane, which enlarges the diameter of the nuclear 
pore on the cytoplasmic side of the nuclear membrane, while at the 
same time reducing the pore diameter at the opposite side. Such 
asymmetric deformation of the nuclear pores in turn favors nuclear 
import, rather than export, of YAP/TAZ. Additionally, it is also 
thought that increased curvature of the lateral portion of the nuclear 
membrane that occurs through cell nuclei flattening via contractile 
force of the stress fibers, exposes the inner surface of the nuclear pore 
to the cytosol, which in turn favors import rather than export of YAP/
TAZ. This is thought to be mediated by the disorganized meshwork 
of flexible FG-nups comprised phenylalanine–glycine (FG) repeats on 
the inner lumen of nuclear pores, which facilitates protein unfolding 
and subsequent passage through the nuclear pore via repulsive inter-
action between the FG repeats and proteins
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cells, in tandem with increasing cell density within the epi-
thelial sheet [47]. It has been shown that increasing forma-
tion of TJs during maturation of the epithelial cell reduces 
cell proliferation via downregulation of YAP/TAZ activity 
[13]. Paramasivam et al. [13] identified a tight-junction pro-
tein of the angiomotin family, AMOTL2, which serves as 
an activator of LATS2 in the Hippo signaling cascade, lead-
ing to phosphorylation and sequestration of YAP within the 
cytosol. Subsequently, it was found that AMOTL2 can also 
bind to MST2, LATS2, and YAP, facilitating the sequestra-
tion and activation of Hippo pathway components at TJs. 
This in turn might lead to inhibition of YAP translocation 
into the cell nucleus, thereby leading to inhibition of cell 
proliferation in response to increasing numbers of TJs within 
the maturing epithelial cell sheet.

YAP/TAZ regulation by the spectrin cytoskeleton 
through the Hippo signaling pathway

Spectrins are filamentous proteins that are organized into 
a polygonal meshwork underneath mammalian cell mem-
branes [48]. They play key roles in the formation of cell 
membrane microdomains, axonal growth, and synapse 
development [48]. Knockdown of spectrin in mammalian 
cells abrogates contact inhibition of proliferation through 
maintenance of YAP translocation into the cell nucleus [49, 
50], via deactivation of LATS1/2 [50]. Currently, the under-
lying mechanisms are still unclear, but is thought to involve 
the role of spectrin as an actin cross-linking protein, which 
enables it to modulate YAP/TAZ activity by effecting ten-
sion within actin stress fibers [49, 50].

YAP/TAZ regulation by surface receptors of soluble ligands 
(GPCRs and RTKs) through the Hippo signaling pathway

Yu et al. [19] reported that YAP/TAZ are regulated by solu-
ble ligands of G protein-coupled receptors (GPCRs), which 
are the targets of about 40% of pharmaceutical drugs on 
the market [51]. GPCRs are a family of cell-surface recep-
tors characterized by seven transmembrane helical domains. 
Upon binding to their cognate ligands, intracellular signals 
are transduced through their heterotrimeric G-proteins  (Gα, 
 Gβ &  Gγ subunits) [51]. GPCRs can be classified into 4 
groups according to their heterotrimeric G-proteins:  G12/13, 
 Gq/11,  Gi/o and  Gs. These groups are associated with different 
intracellular signaling pathways [51]. GPCRs that activate 
 G12/13,  Gq/11, and  Gi/o inhibit LATS1/2 phosphorylation, thus 
leading to increased nuclear translocation of YAP/TAZ [19]. 
In contrast, GPCRs that activate  Gs signaling enhance the 
phosphorylation of LATS1/2, leading to increased YAP/
TAZ sequestration within the cytosol. The underlying 
mechanisms involved remain unclear, but Yu et al. [19] pro-
vided some evidence for the involvement of Rho GTPases 

and actin cytoskeleton organization in mediating LATS1/2 
phosphorylation by GPCRs.

Besides GPCRs, the receptor tyrosine kinase (RTK) fam-
ily has also been implicated in YAP/TAZ regulation through 
the Hippo signaling pathway. Yang et al. [20] demonstrated 
that inhibition of the nerve growth factor (NGF) receptor 
tyrosine kinase (NTRK1) decreases YAP-driven transcrip-
tion, proliferation and migration of cancer cells, through 
increased phosphorylation of LATS1/2. In contrast, Fan 
et al. [38] showed that activation of the epidermal growth 
factor receptor (EGFR), which also belongs to the RTK fam-
ily, instead leads to increased translocation of YAP to the 
cell nucleus. This is achieved by activation of the PI3K-
PDK1 (phosphoinositide 3-kinase-phosphoinositide-depend-
ent kinase-1) signaling pathway by EGFR upon ligand bind-
ing, and this in turn inhibits MST1/2 phosphorylation of 
LATS1/2 [38, 52].

YAP/TAZ regulation by the aPKC‑PAR, Crumbs and Scribble 
polarity complexes through the Hippo signaling pathway

Cell polarity is a distinctive feature of various cell lineages 
and is crucial for various developmental and physiologi-
cal functions [53–58]. Membrane protein complexes that 
play key roles in cell polarity include aPKC-PAR [53–55], 
Crumbs [56, 57] and Scribble [58].

A number of studies have established that the aPKC-PAR 
(atypical protein kinase C-partitioning defective) polarity 
complex regulates YAP/TAZ activity via the Hippo signal-
ing pathway. Archibald et al. [59] studied the mechanism by 
which elevated aPKC expression leads to malignant trans-
formation in epithelial cells, and proposed a model in which 
aPKC binding to MST1/2 blocks its ability to phosphoryl-
ate LATS1/2. This in turn increases nuclear translocation 
of YAP, which leads to activation of proliferation-related 
genes. Zhou et al. [60] found that elevated expression of 
Par3, a key component of the PAR complex, is involved in 
prostate cancer metastasis. They proposed that Par3 inhibits 
phosphorylation of LATS1/2 by sequestrating KIBRA, lead-
ing to enhanced nuclear translocation of YAP [60].

The Crumbs polarity complex also regulates YAP/TAZ 
activity via the Hippo signaling pathway. Szymaniak et al. 
[57] showed that Crb3, a Crumbs isoform, promotes the 
interaction between LATS1/2 and YAP at apical cell junc-
tions, which in turn promotes YAP phosphorylation and 
retention within the cytoplasm. Narimatsu et al. [61] also 
showed that the Crumbs complex promotes phosphorylation 
and inactivation of YAP/TAZ, which in turn inhibits TGFβ-
induced Smad nuclear accumulation and activity.

Liu et al. [62] reported that the disks large homolog 
5 (DLG5) protein facilitates the interaction of Scrib-
ble with MST1/2 and LATS1/2 in the core Hippo signal-
ing cascade, which in turn promotes phosphorylation and 
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inactivation of YAP, resulting in inhibition of breast cancer 
cell proliferation.

YAP/TAZ regulation by other cytosolic signaling 
molecules (PP2A, TAOK1/2/3, MAPK, AMPK, PTPN14) 
through the Hippo signaling pathway

YAP/TAZ are also regulated by other cytosolic signaling 
molecules that enable overlap and cross-talk between the 
Hippo signaling pathway and other signaling pathways. 
Protein phosphatase 2A (PP2A) is a ubiquitously expressed 
serine threonine phosphatase that has diverse roles in tumor 
suppression, apoptosis, cell proliferation and signal trans-
duction. It acts by dephosphorylating various cytosolic sign-
aling molecules, such as Akt, p53, c-Myc and β-catenin. Bae 
et al. [63] showed that PP2A regulates YAP/TAZ through 
dephosphorylation of MST1/2, and its activity may be inhib-
ited by SAV1, which is a part of the core Hippo signaling 
cascade. Thousand and one kinases 1/2/3 (TAOK1/2/3), 
which have diverse functions in various signaling pathways 
relating to inflammation, microtubule dynamics, and stress 
response, also have a role in modulating YAP/TAZ activity. 
Boggiano et al. [64] showed that TAOK1/2/3 regulate YAP/
TAZ activity by facilitating phosphorylation of MST1/2 
within the Hippo signaling cascade. MAP kinase kinase 
kinase kinases (MAP4Ks) are a family of serine threonine 
kinases that regulate a diverse array of biological processes 
including cell survival, proliferation, motility and differen-
tiation, and also regulate YAP through the Hippo signaling 
pathway [65]. Meng et al. [65] showed that several members 
of the MAP4K family act in parallel to MST1/2 to activate 
LATS1/2 within the Hippo pathway, leading to increased 
YAP phosphorylation and sequestration in the cytosol. 
Hence in this respect, MAP4Ks functionally overlap in part 
with MST1/2. Adenosine monophosphate kinase (AMPK) 
is a key regulator of cellular metabolism and a sensor of 
energy/nutrient stress. Mo et al. [23] showed that in the pres-
ence of nutrient starvation or energy stress, AMPK activates 
LATS1/2, leading to YAP phosphorylation and inhibition 
of nuclear translocation. They further showed that AMPK 
can also phosphorylate YAP directly at the Ser 94 residue, 
which is essential for its binding to TEAD, thus inhibiting 
target gene activation by blocking YAP-TEAD interaction. 
A notable example is the inhibition of gene expression of 
glucose-transporter 3 (GLUT3), which is involved in glucose 
metabolism [66]. In addition to AJs and TJs, non-receptor 
tyrosine phosphatase 14 (PTPN14) also mediates contact 
inhibition of cell proliferation by regulating YAP/TAZ activ-
ity through the core Hippo signaling pathway [67, 68]. At 
high cell densities, PTPN14 is abundantly expressed and 
forms a complex with KIBRA, which activates the core 
Hippo signaling cascade to phosphorylate YAP/TAZ via 

MST1/2 and LATS1/2, and this in turn represses TEAD-
specific genes involved in cell proliferation [67, 68].

Regulation of YAP/TAZ activity 
through Hippo‑independent mechanisms

Hippo‑independent regulation of YAP/TAZ through stress 
fibers connected to focal adhesions (FAs)

Besides FA-mediated mechanotransduction through the 
canonical Hippo signaling pathway (Fig. 1), there is also a 
Hippo-independent pathway mediated through contractile 
force generated by actinomyosin stress fibers, which directly 
connect FAs to the apical surface of the cell nuclei via the 
LINC (linker of the nucleoskeleton and cytoskeleton) com-
plex of the nuclear envelope [69]. Elosegui-Artola et al. [69] 
proposed that increased contractile force generated by the 
actinomyosin stress fibers when cells encounter a stiff sub-
strate flattens the cell nuclei (Fig. 2b). This in turn increases 
the curvature of the lateral part of the nuclear membrane, 
which induces asymmetric morphological changes to the 
openings of nuclear pores on both the cytoplasmic and 
nuclear side of the membrane. This in turn favors nuclear 
import, rather than export, of YAP/TAZ (Fig. 2b). It is 
hypothesized that morphological changes to the nuclear 
pore exposes the disorganized meshwork of flexible FG-nups 
comprising phenylalanine–glycine (FG) repeats [70] on the 
inner lumen of the nuclear pores to the cytosol, facilitat-
ing protein unfolding and subsequent passage of YAP/TAZ 
through the nuclear pore via repulsive interaction between 
the FG repeats and the protein.

Hippo‑independent regulation of YAP/TAZ 
through adherens junctions (AJs) and tight junctions (TJs)

As previously discussed, AJs mechanically link the cytoskel-
eton of adjacent cells, and serve as a means by which cells 
sense and react to their density via the Hippo-signaling path-
way through the AJ-associated protein Merlin (also known as 
neurofibromin 2 or NF2). Although Merlin is closely associ-
ated with the Hippo signaling pathway, it is not considered to 
be a central component of the core signaling Hippo signaling 
cascade (Fig. 1). Besides the mechanism described in 2.1.3, 
it was also reported that Merlin can act independently of the 
core Hippo signaling cascade to repress YAP/TAZ activation 
[71]. At high cell densities, increased tensile force exerted on 
the actomyosin-based stress fibers tethered at AJs induces dis-
sociation of Merlin from AJs. Subsequently, the dissociated 
Merlin is translocated to the cell nucleus, where it directly 
binds and forms a complex with YAP. This Merlin-YAP com-
plex is translocated from the cell nuclei to the cytosol via 
the nuclear export signals of Merlin, leading to repression of 
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TEAD-specific genes involved in cell proliferation and thus, 
contact inhibition of proliferation.

As previously discussed, TJs regulate YAP activity through 
the Hippo signaling pathway via AMOTL2. On the other hand, 
Domínguez-Calderó [72] found that TJs can also regulate YAP 
activity through a Hippo-independent mechanism via the tight-
junction protein zona occludens 2 (ZO-2), which binds to and 
sequesters YAP within the cytosol. Upon ZO-2 gene silenc-
ing, hypertropy of renal cells was observed concurrently with 
increased YAP accumulation within the cell nuclei [72].

Hippo‑independent regulation of YAP/TAZ 
through the Wnt‑β‑catenin pathway

The regulation of β-catenin through a cytoplasmic destruc-
tion complex forms the crux of the Wnt signaling cascade 
[73]. This β-catenin destruction complex is a multi-protein 
complex that includes Axin, adenomatous polyposis coli 
(APC), glycogen synthase kinase-3 (GSK3), and casein 
kinase 1 (CK1) [73]. When Wnt signaling is inactive, this 
destruction complex captures not only cytosolic β-catenin 
[73], but also cytosolic YAP [74], leading ultimately to 
degradation by the β-TrCP ubiquitin ligase. The activation 
of Wnt signaling inactivates the destruction complex and 
allows escape of both β-catenin [73] and YAP [74] from 
degradation, which in turn enables their translocation and 
accumulation in the cell nucleus.

Hippo‑independent regulation of YAP/TAZ 
through methylation and phosphorylation

SET7 (also known as SETD7) is a SET-domain-containing 
lysine methyltransferase that methylates and alters the func-
tion of a variety of proteins. Oudhoff et al. [75] demonstrated 
that SET7 methylates the lysine 494 residue of YAP, which 
inhibits its translocation to the cell nucleus and results in 
its sequestration within the cytosol. Knockout of SET7 in 
mice resulted in a larger progenitor compartment in the 
intestine, concomitantly with increased expression of YAP 
target genes.

As previously  discussed, PTPN14 forms a complex 
with KIBRA protein to regulate YAP/TAZ activity via the 
core Hippo signaling pathway. Liu et al. [76] showed that 
PTPN14 can also directly phosphorylate and inactivate YAP, 
through interaction between the WW domain of YAP and the 
PPxY domain of PTPN14. The presence of a YAP-PTPN14 
complex was validated by co-immunoprecipitation [76].

Hippo‑independent regulation of YAP/TAZ 
through the Notch signaling pathway

The Notch signaling pathway is a major signaling path-
way with diverse biological functions, which regulates 

cell-to-cell communications in a juxtacrine manner, via 
interaction between Notch receptors (Notch 1 to 4 iso-
forms) and their corresponding ligands (JAG1, JAG2, 
DLL1, DLL3, and DLL4) expressed on adjacent cells 
[77]. Notch receptor-ligand binding triggers proteolytic 
cleavage and subsequent release of the Notch intracellular 
domain (NICD), which translocates into the cell nucleus, 
where it binds and activates the transcription factor RBPJ 
(recombining binding protein suppressor of hairless), as 
well as the nuclear effector Mastermind-like (MAML), 
thereby initiating transcription of Notch target genes [77].

Although, it is well-known that there is much cross-talk 
between YAP/TAZ and the Notch signaling pathway [78], 
and numerous examples whereby these can work syner-
gistically together to regulate the expression of various 
genes and hence biological processes [78], there have only 
been a few studies to date, which have reported upstream 
regulation of YAP/TAZ activity via the Notch signaling 
pathway [79–81]. In the study of Li et al. [79] on murine 
neural stem cells, it was shown by gain- and loss-of-func-
tion experiments that the Notch signaling pathway exert 
positive upstream control of YAP activity, which in turn 
regulated the proliferation of these cells. Further inves-
tigations revealed that the RBPJ transcription factor of 
the canonical Notch signaling pathway directly control 
transcription of the YAP1 protein by binding to its pro-
moter sequence [79]. Although, Li et al. [79] observed that 
RBPJ could also bind to the promoter sequence of TEAD2, 
this by itself was insufficient to initiate transcription of 
TEAD2. Very similar results were reported by the study of 
Slemmons et al. [80] on human rhabdomyosarcoma cells, 
which also utilized gain- and loss-of-function experiments 
to demonstrate positive regulation of YAP activity by the 
Notch signaling pathway. Again, it was demonstrated that 
RBPJ can bind directly to the YAP promoter and acti-
vate its transcription. Additionally, Slemmons et al. [80] 
showed that the Notch signaling pathway can also facilitate 
YAP nuclear translocation, but the underlying mechanism 
of how this occurs is currently unknown, and it is unclear 
whether this involves the core Hippo signaling cascade. 
Contradictory results were, however, reported by the study 
of Lu et al. [81] on murine hepatic stem cells. Although, 
RBPJ was again shown to bind directly to the YAP pro-
moter, it repressed rather than activated transcription of 
the YAP protein [81]. This in turn led to Notch signal-
ing promoting the differentiation of hepatic stem cells, 
while at the same time inhibiting their proliferation [81] 
by reducing YAP activity. Hence, it is likely that specific 
upstream regulation of YAP/TAZ activity by Notch signal-
ing may vary according to the particular cell type, being 
dependent on complex interactions with other signaling 
processes present in different cell lineages.
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Hippo‑independent regulation of YAP/TAZ 
through the TGF‑β signaling pathway

Transforming growth factor beta (TGF-β) with five know 
isoforms (TGF-β1 to 5), together with other members of 
the TGF-β superfamily, i.e. bone morphogenetic proteins 
(BMPs), growth differentiation factors (GDFs), activin and 
inhibin, play key roles in numerous diverse biological pro-
cesses, such as embryonic development, cell proliferation, 
differentiation and migration [82]. Nevertheless, the focus 
here will be solely on the TGF-β signaling pathway [83].

As in the case of the Notch signaling pathway, the TGF-ß 
signaling pathway is also known to have extensive cross-
talk and interactions with YAP/TAZ, in the regulation of 
numerous genes and biological processes [84, 85]; but again, 
there are few studies that have reported upstream modulation 
of YAP/TAZ activity by the TGF-ß signaling pathway. It 
must be noted that to date, studies have reported that TGF-ß 
signaling can only exert upstream regulation of TAZ, but 
not YAP [86, 87], even though it is known that YAP can 
promote TGF-ß signaling by binding to and facilitating the 
nuclear translocation of SMAD2/3 [88]. For example, in the 
study of Miranda et al. [86] on rodent mesenchymal and 
epithelial cell lines, it was shown that TGF-ß signaling can 
induce only robust expression of TAZ, but not YAP. Further 
investigations revealed that the underlying mechanism was 
independent of SMAD2/3, and involved sequential activa-
tion of p38 MAPK and its major downstream target MK2 by 
TGF-ß signaling, which in turn activates myocardin-related 
transcription factor (MTRF) that drives the TAZ promoter 
in a CC(A/T-rich)6GG (CArG) box-dependent manner and 
induced TAZ protein expression [86]. Additionally, Miranda 
et al. [86] also identified a positive feedback loop mecha-
nism that amplified TGF-ß-induced TAZ expression. This 
involved potentiation of Nox4 expression by MTRF, with 
NOX4 in turn enhancing MTRF activation via phosphoryl-
ation, thereby amplifying TGF-ß-induced TAZ expression 
[86]. The study of Wang et al. [87] on murine hepatic stellae 
cells uncovered another mechanism of upstream regulation 
of TAZ activity by the TGF-ß signaling pathway, at the post-
translational level. Utilizing co-immunoprecipitation, immu-
nofluorescence, and nuclear fractionation assays, Wang et al. 
[87] showed that TGF-β1 signaling promoted binding of 
SMAD2/3 and TAZ to the co-activator p300, leading to for-
mation of a p300/SMAD2/3/TAZ heterocomplex that more 
readily translocate into the cell nucleus. Hence in this case, 
the p300 co-activator induced by TGF-β1 signaling, acted 
as a shuttle for the nuclear transport SMAD2/3 and TAZ, 
as both proteins lacked nuclear localization signals (NLS). 
Further investigations by Wang et al. [87] revealed that both 
the protein scaffolding function and acetyltransferase activ-
ity of p300 were essential for its nuclear transport function, 
and that p300 played no role in YAP nuclear translocation.

Interaction of YAP/TAZ with TEAD transcription 
factors

As already noted, YAP/TAZ controls the expression of 
target genes primarily by acting as a co-activator of TEAD 
transcription factors. There are four isoforms of TEAD 
in mammals (TEAD1–4), all of which contain a highly 
conserved TEA DNA-binding domain (DBD) and a YAP-
binding domain (YBD), separated by a proline-rich region 
(PRR) [89]. There is evidence that early mammalian devel-
opment may be associated with distinct spatio-temporal 
expression patterns of TEAD1-4 [90]. The various target 
genes regulated by YAP/TAZ through TEAD1-4 have been 
linked to a diverse array of biological processes. These 
can be broadly classified into the following six categories 
[91]: (i) cell proliferation, cell cycle and tumorigenesis, 
(ii) cell migration, (iii) stemness/dedifferentiation, (iv) 
cell lineage fate determination and differentiation, (iv) 
cytoskeleton and cell morphology, and (vi) anti-apoptosis 
and cell survival (Table 1). The YAP/TAZ regulation of 
TEAD1-4-activated target genes appears to be precisely 
controlled in a tissue- and cell type-specific manner, pos-
sibly through expression of specific TEAD isoforms in dif-
ferent tissue/cell types [90]. Epigenetic mechanisms may 
also be involved, since there is evidence that YAP/TAZ 
activity can be mediated by various chromatin complexes, 
including the NCOA6 histone methyltransferase complex 
and SWI/SNF chromatin remodeling complex [92, 93]. 
Currently, the precise mechanisms by which YAP/TAZ 
mediates tissue/cell-type specific activation of target genes 
via TEAD1-4 remain unclear.

Some nuclear proteins can regulate YAP/TAZ activ-
ity by modulating their binding interaction with TEAD 
transcription factors within the cell nucleus. Two promi-
nent examples are p38 MAPK (mitogen-activated protein 
kinase) and VGLL4. In the presence of cellular stresses, 
such as hyperosmolarity, high cell density, and cell detach-
ment, increased shuttling of TEAD from the cell nucleus 
to the cytosol takes place [94]. Subsequently, it was found 
that these cellular stresses activate p38 MAPK, which in 
turn binds to TEAD and drives the translocation of TEAD 
from the nucleus to the cytosol, thus repressing the expres-
sion of YAP/TAZ target genes [94]. This translocation of 
TEAD does appear to involve p38 MAPK-mediated phos-
phorylation of TEAD. However, p38 MAPK has no bind-
ing interaction with YAP/TAZ [94]. VGLL4 blocks the 
YAP-TEAD interaction by competing directly with YAP 
for binding to TEAD [33, 95]. In addition, Lin et al. [96] 
found that p300-mediated acetylation of VGLL4 disrupts 
its interaction with TEAD1 in the neonatal heart. This 
results in increased expression of target genes activated 
by YAP–TEAD1 interaction, which promotes the growth 
of heart tissue. On the other hand, disruption of VGLL4 
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acetylation led to suppression of YAP–TEAD binding 
interaction by VGLL4, slowing the growth of heart tissue 
[96].

Interaction of YAP/TAZ with non‑TEAD 
transcription factors

Although TEAD1–4 are the major transcription factors 
that interact with YAP/TAZ to regulate the expression of 
specific target genes in the Hippo signaling pathway, it 
is also known that YAP/TAZ can also bind to and mod-
ulate the activity of various other non-TEAD transcrip-
tion factors. These regulate a diverse array of biological 
processes, with YAP/TAZ demonstrating different effects 
on different cell types. Nevertheless, there are some com-
monalities among different cell types, particularly in the 
case of major key signaling pathways. For example, it is 
well-known that YAP/TAZ binding to the transcription 
factor Smad2/3 mediate cross-talk between the Hippo and 
TGF-β signaling pathways in diverse cell types ranging 
from epithelial, mesenchymal, keratinocyte and colon can-
cer cell lines [88, 97].

Very often, YAP and TAZ interaction with the same 
transcription factor, modulate different signaling pathways 
in different cell types, thus eliciting different biological 
effects, for example, in the case of RUNX2. Brusgard et al. 
[98] demonstrated that the binding interaction of RUNX2 
with TAZ initiated ectodomain shedding of an oncogenic 
soluble E-cadherin fragment (sE-Cad), which worked syn-
ergistically with human epidermal growth factor receptor-2 
(HER2/ErbB2) to stimulate the growth of breast cancer 
cells; whereas, Lin et al. [99] reported that RUNX2 binding 
interaction with YAP can inhibit osteogenic differentiation 
of mesenchymal stem cells, and that this inhibition can be 
overcome through competitive binding of YAP with AP2a.

Many of the non-TEAD transcription factors that have 
binding interactions with YAP/TAZ are implicated in onco-
genesis and cancer metastasis. For example, Tomlinson 
et al. [100] and Roperch et al. [101] established that apop-
tosis can be regulated by the binding of YAP/TAZ with the 
p53-related proteins p63 and p73. Bora-Singhal et al. [102] 
showed that YAP can bind to and enhance OCT4 activity, 
which in turn upregulated SOX2 expression to promote 
self-renewal and vascular mimicry of stem-like cells from 
non-small cell lung cancer. Kuser-Abali et al. [103] identi-
fied YAP as a physiological binding partner and positive 
regulator of androgen receptors in prostate cancer. Liu et al. 
[104] showed that the binding of YAP with PRDM4 induced 
leukocyte-specific integrin β2 (ITGB2) expression in can-
cer cells, which in turn promoted cell invasion through the 
endothelium in a similar manner to leukocytes.

Conclusion

Recent years have seen an exponential growth of scientific 
knowledge on the intricate molecular mechanisms regu-
lating YAP/TAZ and their associated signaling pathways. 
Despite commonalities in the various upstream and down-
stream signaling pathways related to YAP/TAZ, it should 
be noted that the specific biological effects elicited by 
YAP/TAZ ultimately depend on the specific cell type and 
lineage in question, simply because different cell types and 
lineages have variable amounts and proportions of diverse 
signaling and effector molecules that interact with YAP/
TAZ. For example, variable proportions of the TEAD 1 
to 4 isoforms in different cell types lead to activation of 
different subsets of effector genes by YAP/TAZ. Moreo-
ver, different cell types and lineages may have differing 
sensitivity to YAP/TAZ, so that what may be considered 
‘low’ YAP/TAZ activity in one particular cell type or line-
age, may in fact work as ‘high’ or ‘moderate’ activity in 
another cell type or lineage.

New insights into the regulatory mechanisms of YAP/
TAZ can potentially lead to novel therapeutic applications. 
First, they may offer clues to solving one of the most dif-
ficult and intractable challenges in tissue engineering and 
regenerative medicine, i.e., to quickly obtain sufficient 
numbers of tissue-specific adult stem cells or progenitors 
for transplantation therapy. Due to the key roles of YAP/
TAZ in activating the proliferation and self-renewal of 
various adult stem cell lineages during the regeneration 
process, and in maintaining the ‘stemness’ of these cells 
[105, 106], it may be useful to employ high-throughput 
drug screening technology to screen various natural-prod-
uct-derived or artificially synthesized small molecules for 
the capacity to activate proliferation or enhance ‘stemness’ 
of specific adult stem cell types via upregulation of YAP/
TAZ activity (e.g., by utilizing fluorescent reporter genes). 
Such newly identified small molecule drugs might not only 
find application to facilitate the expansion of transplant-
able adult stem/progenitor cells in vitro, but also might be 
delivered into the human body directly or via controlled 
release from biomedical implants to aid tissue regeneration 
via activation and mobilization of the body’s endogenous 
pool of adult stem cells.

Second, new knowledge on YAP/TAZ should help to 
improve the biomimetic properties and therapeutic effi-
cacy of implant materials. There are already much data 
on how the biomechanical properties of substrata, such 
as stiffness [9–11] and topography (i.e. micro- and nano-
patterning) [107–111], can modulate YAP/TAZ activity. 
Much research has been focused on the role of YAP/TAZ 
in the mechanosensing of substrata biomechanical prop-
erties via both Hippo-dependent and Hippo-independent 
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mechanisms. Increasing knowledge of how YAP/TAZ 
activity correlates with the healing and regeneration pro-
cesses at specific tissue/organ sites, may enable us to fine 
tune the biomechanical properties of implant materials. 
For example by screening the YAP/TAZ activity of rel-
evant cell lineages cultured on newly-developed bioma-
terials in vitro.

Third, the rapidly progressing field of synthetic biology 
may open up intriguing new possibilities for applying our 
increasing knowledge of YAP/TAZ in hitherto unimagined 
ways. Synthetic biology is the science of creating and engi-
neering artificial biological systems (often for therapeutic 
applications) through reassembling biological items with 
known functions (i.e. genes, proteins) in a systematic and 
rational manner [112, 113]. Because YAP/TAZ are key 
mediators of cellular interaction with the microenvironment, 
including (i) biomechanical cues [9–17], (ii) extracellular 
ligands, such as growth factors and lipids [18–21], (iii) 
energy, osmotic and hypoxic stress [22–25], and (iv) inflam-
mation and tissue injury [26–30], it is possible that YAP/
TAZ and related effector and signaling molecules could be 
integrated into complex synthetic gene networks that would 
activate the transcription of specific therapeutic transgenes 
in response to changes in YAP/TAZ activity [112, 113]. 
Alternatively, synthetic gene circuits might be designed to 
activate YAP/TAZ in response to specific stimuli, such as 
molecular markers of tissue injury or metabolic stress. We 
hope that the present review will inspire new advances in 
these and other areas.
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