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A B S T R A C T

Objective: This study aims to investigate the responsiveness of transcription factor TEA domain family member 1
(TEAD1) to mechanical force and its impact on osteoclastogenesis as well as expression of Osteoprotegerin
(OPG), an inhibitor for osteoclastogenesis playing crucial roles in mechanical stress-induced bone remodeling
and orthodontic tooth movement (OTM).
Methods: We first analyzed the correlation between several transcription factors and OPG expression in human
periodontal ligament cells (PDLCs). Then dynamic expression changes of TEAD1 with force application were
analyzed due to its high correlation with OPG. Loss-of-function experiments were performed to demonstrate the
role of TEAD1 in regulation of RANKL/OPG, as well as osteoclastogenesis by tartrate-resistant acid phosphatase
(TRAP) staining. Combination of bioinformatics analyzes and chromatin immunoprecipitation assay was utilized
to investigate occupancy of TEAD1 on the enhancer elements of OPG and the dynamic change in response to
force stimuli. Involvement of Hippo signaling in regulation of OPG was further demonstrated by pharmacologic
inhibitors of several components.
Results: Expression of TEAD1 highly correlates with that of OPG and decreases in response to mechanical force
in human PDLCs. Knockdown of TEAD1 downregulates expression of OPG and promotes osteoclast differ-
entiation. Mechanical force induced decreased binding of TEAD1 on an enhancer element ˜22 kilobases upstream
of OPG promoter. OPG was also affected by pharmaceutical disruption of Hippo signaling pathway.
Conclusions: TEAD1 is a novel mechano-responsive gene and plays an important role in force-induced osteo-
clastogenesis, which is dependent, as least partially, on transcriptional regulation of OPG.

1. Introduction

Periodontal ligament is the soft connective tissue lying between
cementum and the alveolar bone. It plays crucial roles in providing
vascular supply and nutrients, as well as maintaining bone homeostasis
(Beertsen, McCulloch, & Sodek, 1997). Periodontal ligament cells are
mainly composed of heterogeneous fibroblasts that include osteogenic
progenitor cells. Besides, there are cementum cells, macrophages and
lymphocytes in the periodontal ligament (Jiang et al., 2016). During
mechanical stimuli-induced orthodontic tooth movement (OTM),
compressive force applied on the periodontal ligament could induce
osteoclastogenesis through secretion of a series of pro-inflammatory
cytokines including interleukin 1 (IL-1), interleukin 6 (IL-6), and cy-
clooxygenase 2 (COX-2), etc. Importantly, the receptor activator of
nuclear factor-κB (RANK)/ ligand for the receptor activator of nuclear

factor-κB (RANKL)/ osteoprotegerin (OPG) axis plays a pivotal role and
is considered to be a rate-limiting determinant for OTM (Yamaguchi,
2009). OPG inhibits osteoclastogenesis as a decoy receptor to prevent
the interaction between RANK and its ligand RANKL in bone home-
ostasis and osteoporosis (Boyle, Simonet, & Lacey, 2003; Simonet et al.,
1997). Expression of OPG was reported to be downregulated both in
vivo and in vitro after force application. (Li et al., 2011, 2013; Li, Zhang,
Wang, Li, & Zhang, 2015; Nishijima et al., 2006; Toygar, Kircelli, Bulut,
Sezgin, & Tasdelen, 2008) Moreover, local OPG gene transfer to peri-
odontal tissue could inhibit OTM (Kanzaki et al., 2004), underlying the
importance of OPG in osteoclastogenesis during OTM. However, up to
now, its upstream regulators responding to mechanical cues remain
elusive.

Mechanical forces are sensed primarily at integrin–extracellular
matrix and cell–cell adhesion sites at cell surface. Then the information
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is transmitted through mechanosensory systems that include stretch-
activated ion channels, integrins and adherens junctions, adaptor pro-
teins such as vinculin and talins, focal adhesion kinase, and the SRC-
family kinases that connect the extracellular mechanical world to the F-
actin cytoskeleton. (Uhler & Shivashankar, 2017) Notably, these me-
chanosensory proteins and cytoskeleton remodeling could induce
changes in some signaling pathways, such as Hippo signaling cascade
through interaction with its components and further cause downstream
transcriptional changes and cellular behavioral alterations (Panciera,
Azzolin, Cordenonsi, & Piccolo, 2017).

The Hippo cascade with established functions in organ size control
and tissue homeostasis is emerging as a mechanotransduction pathway
(Meng, Moroishi, & Guan, 2016; Yu, Zhao, & Guan, 2015). After the
perception of mechanical strains, actin cytoskeleton and Rho GTPases
would act on the core kinase components of Hippo pathway, including
the Set20-like kinase 1/2 (MST1/2) and the large tumor suppressor 1/2
(LATS1/2) (Meng et al., 2016). The translation of physical cues into
biochemical reactants through Hippo signaling thus would lead to the
sequestration and degradation of Yes-associated protein (YAP) and
transcriptional co-activator with PDZ-binding motif (TAZ) in

Fig. 1. Expression of TEAD1 correlates with OPG in human PDLCs. The total mRNA of freshly isolated PDLCs from 7 donors was collected and subjected to
quantitative reverse transcription PCR (RT-qPCR). The gene expression correlations between each indicated transcription factor and OPG were displayed as a scatter
plot, respectively. (n= 3).
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cytoplasm, and such inactivation will eventually lead to the cessation of
transcription of their target gene (Meng et al., 2016). When these two
transcriptional coactivators are shuttled into nucleus, they could in-
teract with the TEA domain (TEAD) family transcription factors to
regulate a broad spectrum of downstream genes with diverse roles in
self-renew of stem cell, cell proliferation and fate determination
(Zanconato, Cordenonsi, & Piccolo, 2016).

In mammals, four highly conserved TEAD transcription factors have
been identified as TEAD1, TEAD2, TEAD3 and TEAD4 (Xiao, Davidson,
Matthes, Garnier, & Chambon, 1991). Though TEADs can be detected in
almost any eukaryotes,(Kaneko & DePamphilis, 1998) their expression
patterns are distinct and each of them has a unique function in con-
trolling both physiologic processes and oncogenic malignancies
(Jacquemin et al., 1998; Kaneko, Cullinan, Latham, & DePamphilis,
1997; Zhou et al., 2016). Moreover, though TEADs’ function as tran-
scription factors require interaction with coactivatiors such as YAP/TAZ
and p160, aberrant transcriptional levels of TEADs are found in various
types of cancer which correlate with poor clinical outcome (Pobbati &
Hong, 2013), indicating the important role of TEADs in cell functional
maintenance. In addition, YAP/TAZ has been reported to be involved in
regulation of osteoblast and osteoclast differentiation, though the
conclusions are still controversial (Hong et al., 2005; Kegelman et al.,
2018; Zaidi et al., 2004), raising the possibility that Hippo signaling
might also be involved in mechanical stress-induced bone remodeling
process. Therefore, we believe it necessary to investigate whether
TEADs family and YAP/TAZ could transcriptionally respond to me-
chanical stress and mediate downstream target genes regulation re-
garding osteoclast differentiation.

In this study, we identified TEAD1 as a novel mechano-responsive
gene in human PDLCs. We showed that TEAD1 decreased upon force
stimuli, correlating with the expression of OPG. Loss-of-function ex-
periments indicated TEAD1-mediated regulation of RANKL/OPG and
osteoclastogenesis of co-cultured RAW264.7 cells. We further dissected
the molecular basis for TEAD1′s function with physical cues induced
dynamic binding on a distal enhancer element of OPG in human PDLCs.

2. Materials and methods

2.1. Cell lines, cell culture and treatments

Human PDLCs were isolated from PDL of normal orthodontic ex-
tracted bicuspid, according to previously reported protocols with slight
modification (Iwata et al., 2010; Zheng et al., 2009). Tissues were ob-
tained under approved guidelines set by Peking University Ethical
Committee with informed donor consent. Briefly, the PDL tissues of 7
donors were separated from the mid-third of the root surface and
minced into small tissue cubes. Subsequently, the tissue cubes were
digested with a solution of 3mg/mL collagenase (type I) with 4mg/mL
dispase (both from Sigma-Aldrich) in α-minimum essential medium (α-
MEM, Hyclone) for 15min at 37 °C with vigorous shaking. The tissue
explants were then plated into culture dishes containing α-MEM sup-
plemented with 10% fetal bovine serum (FBS; Hyclone), 0.292mg/mL
glutamine (Hyclone), 100 units/mL penicillin streptomycin (Hyclone),
and 100mM/L ascorbic acid (Sigma-Aldrich) and incubated at 37 °C in
a humidified atmosphere containing 5% CO2. Cells were used in this
study with 4 to 6 passages. In Figs. 2–5, PDLCs isolated from 3 of the 7
individuals were pooled together and used.

Static compressive force was applied as previously described.
(Mitsui et al., 2005) A layer of glass cover and additional metal weights
were placed on top of an 80% confluent cell layer in 6-well plates. Cells
were subjected to different continuous compressive forces ranging from
0 to 1.5 g/cm2 for 24 h (h) or at 1.5 g/cm2 for different durations ran-
ging from 0 to 24 h.

To evaluate the influence of Hippo signaling on OPG expression, the
following inhibitors were used in this study: the JNK inhibitor
SP600125 (Selleck), the MST1/2 inhibitor XMU-MP-1 (Selleck, final

concentration 2 μM), and the YAP/TAZ activity inhibitor verteporfin
(MedChemExpress).

2.2. Flow cytometry analyses

Cells were washed with PBS, detached with 0.25% trypsin, and fixed
with 75% ethanol overnight. After treatment with 1mg/ml RNase A
(Sigma) at 37 °C for 30min, cells were resuspended in 0.5ml of PBS and
stained with propidium iodide in the dark for 30min. Fluorescence was
measured with a flow cytometry system (BD Biosciences). The cell cy-
cles were analyzed using the Modfit software.

2.3. Co-culture of PDLCs and RAW 264.7 or human peripheral blood
mononuclear cells (PBMCs) and TRAP staining

PDLCs were seeded into 6-well plates and transfected with siRNAs
against TEAD1 or the non-sense control siRNA. Then the cells were
subjected to compressive force of 1.5 g/cm2 for 24 h, and RAW264.7
cells were added to the well. After 7 days, the cells were fixed and
stained for TRAP staining using acid phosphatase kit (387 A, Sigma).
TRAP-positive multinucleated osteoclasts were counted in 5 visual
fields in each well (n= 3). We calculated the average value of 3 ex-
periments. Human PBMCs were primarily derived from periphery
blood. Then the PBMCs were co-cultured with PDLCs and subjected to
TRAP staining 21 days later.

2.4. Fractionation, western blotting analyses and antibodies

Cultured cells were harvested after washing with ice-cold phos-
phate-buffered saline and then lysed in extraction buffer (50mM Tris-
HCl, pH 8.0. 150mM NaCl, 1 mM EDTA, 0.5% Nonidet p-40, 0.01%
protease inhibitor mixture). Cells were fractionated using Nuclease and
Cytoplasmic Extraction Reagents (Thermo Fisher Scientific, MA, USA),
according to the manufacturer’s protocol.

Western blotting analyses were performed as previously described
(Zhang et al., 2016). Antibodies used are as follows: anti-TEAD1
(13283-1-AP, Proteintech); anti-OPG (ab11994, Abcam); anti-glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) (sc-47724, Santa
Cruz); anti-RANKL (ab45039, Abcam); anti-Phospho-YAP (Ser127)
(#13008, Cell Signaling Technology, (CST)); anti-Phospho-YAP
(Ser397) (#13619, CST), anti-YAP/TAZ (#8418, CST); anti-β-actin
(#3700, CST) ; anti-lamin A/C (#4777, CST).

2.5. siRNA transfection, plasmid transfection and quantitative reverse-
transcription polymerase chain reaction (qRT-PCR)

Two double-stranded siRNAs against TEAD1 and the scrambled
control siRNA (siNC) were chemically synthesized (GenePharma). The
sequences of siRNA are as follows: siTEAD1-1: CGATUUGUAUACCGA
AUAA; siTEAD1-2: GAAAGGUGGCUUAAAGGAA. Transfection of
siRNA was performed using the Lipofectamin RNAiMAX (Invitrogen)
following the manufacturer’s instruction.

The TEAD1 overexpression plasmid pRK5-Myc-TEAD1 and the
empty control vector pRK5 were purchased from Addgene. Transfection
of plasmid was performed using Lipofectamine LTX (Invitrogen) fol-
lowing the manufacturer’s instruction.

Total RNAs were extracted from PDLCs using Trizol reagent
(Invitrogen). Synthesis of first strand cDNA and subsequent quantitative
PCR were performed as previously described. All qRT-PCR processes
were performed three times using GAPDH as the internal control. The
primers used in this study are as listed below: GAPDH forward (F):
caatgaccccttcattgacc, GAPDH reverse (R): atgacaagcttcccgttctc; RANKL
F: ATCACAGCACATCAGAGCAGAGA, RANKL R: AGGACAGACTCACT
TTATGGGAAC; OPG F: gaggcattcttcaggtttgc, OPG R:
gctgtgttgccgttttatcc; TEAD1 F: cttgccagaaggaaatctcg, TEAD1 R:
ccccagcttgttatgaatgg; TEAD2 F: ttttggtctggaggatctgg, TEAD2 R:

Q. Li, et al. Archives of Oral Biology 100 (2019) 23–32

25



atgggggagtcagtgacaag ; TEAD3 F: agatgtacggccgaaatgag, TEAD3 R:
ttttctcgtccgagtcttcc; TEAD4 F: tcatccacaagctcaagcac TEAD4 R: tcatcca-
caagctcaagcac; SRF F: Gccactggctttgaagagac, SRF R: tgctaggtgctgtttg-
gatg; NF-ƙB subunit p65 F: Tgggaatccagtgtgtgaag, p65 R:
aaggggttgttgttggtctg. IL-6 F: aggcactggcagaaaacaac, IL-6 R: ttttcac-
caggcaagtctcc; IL-1 F: tgcctgagatacccaaaacc, IL-1 R: gtttggatgggcaact-
gatg; colony stimulating factor 1(M-CSF) F: ttgtcaaggacagcaccatc, M-
CSF R: ttctgggacccaattagtgc; m (mouse) c-fos F: agaaacggagaatccgaagg,
mc-fos R: tgcaacgcagacttctcatc; m nuclear factor of activated T cells 1
(Nfatc1) F: tgggagatggaagcaaagac, mNfatc1 R: ttgcggaaaggtggtatctc;
mgapdh F: aacgaccccttcattgacctc, mgapdh R: actgtgccgttgaatttgcc.

2.6. Bioinformatics analysis

The genome-wide DNase I sensitivity data for periodontal ligament
cells was retrieved from the ENCODE project (Consortium, 2012). We
used homer (Heinz et al., 2010) software to scan the whole genome for
TEAD motifs.

2.7. Chromatin immunoprecipitation assay

Chromatin immunoprecipitation assay was performed using the
SimpleChIP Enzymatic Chromatin IP (Immunoprecipitation) Kit
(#9002, CST) according to manufacturer’s instruction. The antibody
used was TEAD1 (#12292, CST). The precipitated DNA was quantified
by qPCR using primers, which were designed according to the 5 regions

Fig. 2. Compressive force decreases expressions of TEAD1 in human PDLCs. (A) Forces with different intensity induced downregulation of TEAD1. PDLCs were
treated with increasing force intensity for 24 h, followed by total proteins and mRNA extraction. Expression changes of TEAD1 were determined by western blot (top
and middle) and qRT-PCR (bottom), respectively. (B) Force induced downregulation of TEAD1 in a time-dependent manner. PDLCs were treated with varying
durations at 1.5 g/cm2 force, followed by total proteins and mRNA extraction. Expression changes of TEAD1 were determined by western blot (top and middle) and
qRT-PCR (bottom), respectively. (C) Protein levels of RANKL and OPG changed with force application. Western blotting analysis of RANKL and OPG in PDLCs
exposed to compressive force of 1.5 g/cm2 for prolonged time durations (F). GAPDH serves as a loading control. Data represent mean ± SD from three independent
experiments. *P < 0.05. (n= 3).
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potentially bound by TEAD1 as uncovered by bioinformatics analysis:
primer1F: TGCCTAATGCTGTTGACTGG; primer1R: TTCCATCTGGTGG
TGGAAAG; primer2F: TTCCACTTTGTGGTGAGGTG; primer2R: AAAA
GAGATGGTGCCCAACC; primer3 F: GTGACTGCAAGGGCATTTTAC;
primer3R: GCGTCTTTAGTTGTGGACTGG; primer4F: TGTGCTTGTGTC
TCCTCCAC; primer4R: TCTGGGACACACTCCAACTG; primer5 F: TGA

GCTCATGTTCTCCAAGG; primer5R: TGGGAGTGTTGGCTTTTAGG.

2.8. Statistical analyses

All the data were presented as mean ± standard deviation (SD) of
three independent experiments. Statistical analysis was performed

(caption on next page)
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using Student t-test or one-way analysis of variance (ANOVA). P values
are specified in the relevant figure legend. Statistical significance was
considered at P< 0.05.

3. Results

3.1. Correlated down-regulation of OPG and TEAD1 expressions in
response to compressive force

As stated above, OPG has been well recognized as a critical inhibitor
for osteoclastogenesis with extensive implications in mechanical cues
induced orthodontic tooth movement (Yamaguchi, 2009), yet little
molecular insight on its upstream linkage toward known mechan-
osignaling pathways has been documented. To address this, we col-
lected periodontal ligament cells (PDLCs) from 7 donors (Q. Li, Ma,
Zhu, Zhang, & Zhou, 2017), and extracted their mRNA to test the

expression correlation between OPG and a panel of transcription factors
with established mechanotransduction functions such as serum re-
sponse factor (SRF), p65 in nuclear factor-κB (NF-κB) pathway (Mendez
& Janmey, 2012), TEAD1, TEAD2, TEAD3 and TEAD4 in Hippo
pathway. The mRNA levels were measured by quantitative reverse
transcription PCR (qRT-PCR), and the statistical analysis revealed a
significant expression correlation between OPG and TEAD1 compared
to other candidates (Fig. 1A-F).

To further probe the expression changes of OPG and TEAD1 in re-
sponse to physical strains, we then exposed the PDLCs to compressive
mechanical stress ranging from 0 to 1.5 g/cm2. Western blotting results
indicated that when the external force was applied stronger, the protein
level of TEAD1 decreased to a lower extent (Fig. 2A, top and middle
panels). qRT-PCR results revealed a consistent decline of their mRNA
levels (Fig. 2A, bottom panel). A time-course analysis for their protein
and mRNA expression changes further consolidated this point, since

Fig. 3. TEAD1 knockdown results in decreased expression of OPG, as well as promoted osteoclast differentiation. (A–B) Knockdown of TEAD1 by siRNA led to
downregulation of OPG. PDLCs were transfected with two independent siRNAs against TEAD1 (siTEAD1-1, siTEAD1-2), or the non-sense control siRNA (siNC). Then
cells were harvested for western blotting (A) and qRT-PCR analyses (B) of indicated genes. GAPDH serves as a loading control. (C) Overexpression of TEAD1
upregulated OPG expression. PDLCs were transfected with the plasmid overexpressing TEAD1 (TEAD1), or the empty control vector (Vector). Then mRNA was
extracted and subjected to qRT-PCR analysis of OPG expression. (D) Knockdown of TEAD1 had no effect on the expression of IL-1, IL-6 and M-CSF. PDLCs were
transfected with siRNA as in (A) and subjected to qRT-PCR analysis. (E) Knockdown of TEAD1 in PDLCs promoted activation of co-cultured RAW264.7 cells.
RAW264.7 cells were co-cultured with supernatants from PDLCs transfected with siRNAs against TEAD1 (siTEAD1-1, siTEAD1-2) or non-sense control (siNC),
followed by force stimulation for 24 h. 3 days later, RAW 264.7 cells were harvested and subjected to qRT-PCR analyses for expression of c-fos and NFAtc-1. (F–G)
TEAD1 knockdown promoted force-induced osteoclast differentiation in co-culture systems. PDLCs were transfected with siRNA as in (A), followed by 24 h’s force
application at 1.5 g/cm2 and subsequent co-culture with RAW264.7 (F) or human PBMCs (G) for 7 or 21 days. Then cells were subjected to TRAP staining. Scale bar:
100 μm. Data represent mean ± SD from three independent experiments. (n= 3) *P < 0.05.

Fig. 4. Identification of a distal enhancer occupied by TEAD1 at the OPG locus. (A) Schematic representation of DNase I sensitivity data surrounding the OPG locus
from two replicates of periodontal ligament cells. The data was retrieved from the ENCODE project (Consortium, 2012). TEAD binding motif was predicted by use of
homer software (Heinz et al., 2010). (B) Chromatin immunoprecipitation assay coupled with quantitative PCR was performed in PDLCs. Enrichment of TEAD1 on the
five candidates from (A) was determined. (C) TEAD1′s occupation on the distal enhancer decreases with force application. PDLCs were exposed to compressive force
of 1.5 g/cm2 for 24 h. Enrichment of TEAD1 on the indicated element in the unstrained (Control) or strained cells (Force) was determined using chromatin im-
munoprecipitation assay. Data represent mean ± SD from three independent experiments. (n=3) *P < 0.05.
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their inhibition by mechanical strains was more prominent when the
force were applied for a longer time (Fig. 2B). We also observed the
elevated RANKL, and declined OPG expression induced by compressive
force (Fig. 2C), implying a high correlation between TEAD1 and OPG in
response to compressive force.

3.2. TEAD1 regulates OPG expression and osteoclast differentiation

Having established the correlation between TEAD1 and OPG in both
unstressed and force-stressed conditions, we speculated that TEAD1
might modulate expression of OPG via functioning as a bone fide
transcription factor for OPG. If so, we could expect that OPG expression
would decrease in the unstrained PDLCs when TEAD1 is depleted.
Indeed, after transfection of PDLCs with two independent siRNAs
against TEAD1 or control siRNA, we observed that the expression of
OPG in TEAD1 depleted cells was significantly lower than that in the
control cells at both protein level and mRNA level (Fig. 3A, B). How-
ever, the expression of RANKL was not affected (Fig. 3A, B). Conversely,
overexpression of TEAD1 led to increased OPG expression in the un-
strained cells (Fig. 3C). These data suggested that knockdown of TEAD1
suppressed OPG expression, whereas overexpression of it promoted
OPG expression. Besides RANKL/OPG, there are other pro-in-
flammatory cytokines which play important roles in osteoclast differ-
entiation, such as colony stimulating factor 1(M-CSF), IL-1, IL-6, etc.
qPCR results indicated that knockdown of TEAD1 had no significant
impact on expression of these genes, underlying the specific regulation
of OPG by TEAD1 (Fig. 3D).

Given the critical role of OPG in bone resorption during OTM, we
next explored whether TEAD1 could play a role in regulating force-
induced osteoclastogenesis. To this end, PDLCs were first transfected
with siRNA against TEAD1, and then exposed to compressive loading,
followed by co-culture with the murine macrophage cell line
RAW264.7. As shown in Fig.3E, knockdown of TEAD1 in force-stimu-
lated PDLCs upregulated the expression of osteoclast marker genes c-fos
and NFATc1 in co-cultured RAW264.7 cells. More importantly, the
numbers of TRAP positive osteoclasts in the two groups with TEAD1
knockdown (siTEAD1-1,-2) were significantly higher than that of con-
trol group (siNC) (Fig. 3F). To consolidate this point, we took advantage
of human PBMCs and co-cultured them with PDLCs. The results of
TRAP staining kept in accordance with that of the RAW264.7 cells
(Fig. 3G). These results indicated that force-induced decline of TEAD1
contributed to osteoclastogenesis in co-culture systems.

3.3. Occupation of TEAD1 on a distal enhancer at the OPG locus decreases
with force application

To thoroughly delineate the molecular basis for TEAD1-mediated
transcriptional regulation of OPG, we next sought to determine the
binding site of TEAD1 on the OPG locus. Since transcription factor
binding sites are enriched in open chromatin context, which can be
probed by their high sensitivity to DNase I digestion, we thus took
advantage of the genome-wide DNase I sensitivity data from the
ENCODE (Consortium, 2012) project for its epigenomic annotations of
periodontal ligament cells to narrow down the number of possible
regulatory elements in the OPG locus. With further restriction using

TEAD motif information (Heinz et al., 2010), we finally obtained five
potential TEAD bound enhancers in a ˜200 kilobases window sur-
rounding the OPG locus (Fig. 4A).

We then performed chromatin immunoprecipitation assay to ex-
amine the enrichment pattern of TEAD1 on these candidates. The re-
sults in unstrained PDLCs revealed that the site ˜22 kilobases from OPG
transcription start site was a genuine TEAD1 bound element compared
to a negative control region and other candidates (Fig. 4B). Further-
more, in line with the decreased OPG expression in response to physical
cues (Fig. 2), application of compressive force resulted in the deceased
binding of TEAD1 at this site (Fig. 4C). From these results, it can be
proposed that compressive force induced declined binding of TEAD1 on
the enhancer element of OPG, leading to transcriptional down-
regulation of OPG.

3.4. Hippo signaling pathway is involved in regulation of OPG

TEAD1 is one of the major nuclear effectors in Hippo signaling
cascade (Meng et al., 2016). Given the critical function of Hippo
pathway in mechanosignaling, we hypothesized that Hippo signaling
might be affected by compressive force and participate in regulation of
downstream biological events such as proliferation and osteoclasto-
genesis. Flow cytometry analyses suggested that compressive force
suppressed the PDLCs’ proliferation, as manifested by elevated per-
centage of G0/G1 PDLCs and decreased S phase cells along with in-
creased force intensity (Fig. 5A). This raised the possibility that com-
pressive force led to changes in YAP/TAZ activity thereby retarded the
cells’ growth. Indeed, fractionation experiment demonstrated the force-
induced downregulation of YAP/TAZ both in the nucleus and the cy-
toplasm. (Fig. 5B) We then asked whether inactivation of key Hippo
components or inhibition of its upstream c-Jun N-terminal kinase (JNK)
could impair the responsiveness of OPG to physical cues. For this pur-
pose, PDLCs were treated with JNK specific inhibitor SP600125 prior to
exposure to compressive force loading. By comparison of the qRT-PCR
results in strained versus unstrained cells, we observed that, contrary to
the significantly decreased expression of OPG in Hippo-proficient cells,
such downregulation was severely blunted in PDLCs treated with in-
creasing dosage of SP600125 (Fig. 5C). Next, we examined the altera-
tion of OPG in PDLCs treated with XMU-MP-1, which has been shown to
be able to block MST1/2 kinase activity, and reduce the phosphoryla-
tion of endogenous MOB kinase activator 1 A (MOB1), LATS1/2 and
YAP (Fan et al., 2016). Western blot analysis demonstrated the pro-
minent reduction of YAP phosphorylation by XMU-MP-1, while protein
level of OPG was inversely elevated (Fig. 5D), underlying the negative
regulation of Hippo signaling on OPG expression.

As the nuclear effector of Hippo signaling, TEAD family transcrip-
tion factors function critically relying on recruitment of YAP/TAZ
during mechanotransduction. So it can be postulated that inhibition of
YAP/TAZ activity would impair the transcription of downstream target
genes of TEADs including OPG. To testify this point, we treated PDLCs
with increasing dosage of verteporfin, a specific inhibitor of YAP/TAZ
activity capable of disrupting the association between YAP/TAZ and
TEADs (Liu-Chittenden et al., 2012). As the well-recognized target gene
of YAP/TAZ, cellular communication network factor 1 (CCN1, CYR61)
expression showed profound decrease upon verteporfin administration,

Fig. 5. Hippo signaling pathway regulates OPG expression. (A) Flow cytometry analysis of PDLCs subjected to increased force intensity for 24 h. The percentages of
cells in each phase were shown as average from 3 independent experiments. (B) Compressive force decreased expression of YAP/TAZ both in the nucleus and in the
cytoplasm. PDLCs were exposed to increasing force intensity for 24 h, and then the cells were harvested and subjected to nuclear and cytoplasmic lysates fractio-
nation and western blotting analyses. Lamin A/C and β-actin served as loading controls of nuclear and cytoplasmic proteins, respectively. (C) SP600125 attenuated
force-induced reduction of OPG. PDLCs were treated with JNK-specific inhibitor SP600125 at indicated concentrations for 24 h. The cells were then exposed to
compressive force of 1.5 g/cm2 for 6 h. The mRNA level of OPG was measured by qRT-PCR. (D) OPG expression was promoted by administration of XMU-MP-1.
PDLCs were treated with MST1/2-specific inhibitor XMU-MP-1 for 48 h. The protein level of OPG and phosphorylated YAP1 (p-YAP1(S127), p-YAP1(S397)) were
determined by western blot. (E–G) OPG was repressed by administration of Verteporfin. PDLCs were administered with increasing dosage of Verteporfin for 48 h.
Then total cell lysates and mRNA were extracted and subjected to qRT-PCR analysis (E, F) and western blotting (G), respectively. GAPDH served as a loading control.
Data represent mean ± SD from three independent experiments. (n= 3) *P < 0.05.
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indicating that YAP/TAZ activity was effectively inhibited (Fig. 5E). As
expected, the expression of OPG was also downregulated along with
verteporfin administration, even to a greater extent than CYR61
(Fig. 5F, G). The administration of verteporfin also inhibited TEAD1
expression, similar with reports in the cancer cell lines (Wei et al.,
2017). These results demonstrated that transcription of OPG was in-
hibited by blockage of YAP/TAZ activity.

4. Discussion

OTM is featured as an alveolar bone remodeling process. On the
tension side, new bones are formed by the osteoblasts; while bone re-
sorption occurs by the osteoclasts on the compression side (Baloul,
2016). The osteoclast differentiation is initiated by RANKL secreted by
osteoblasts. Binding of RANKL on RANK recruits the adaptor protein
TNF receptor associated factor 6 (TRAF6), leading to activation of
downstream signaling cascades including protein kinases-mediated NF-
κB and AP-1 transcription factor C-FOS, as well as activation of mitogen
activated protein kinases (MAPKs) such as c-Jun N-terminal kinase
(JNK), p38, and extracellular signal-regulated kinase. These factors
have been shown to play critical roles during osteoclast differentiation
(Park, Lee, & Lee, 2017). OPG usually acts as an inhibitor of osteo-
clastogenesis due to its competition with RANKL for the binding of
RANK. Moreover, it was also reported to promote the separation of
osteoclasts adhering to the bone matrix from the bone surface (O’Brien,
Williams, & Marshall, 2001). OPG expression was demonstrated to be
decreased in PDLCs subjected to compressive force as well as gingival
crevicular fluid during OTM (Kim, Park, Park, Lee, & Kang, 2013; Li
et al., 2015; Nishijima et al., 2006), while the underlying mechanisms
are not reported yet to the best of our knowledge. Our study provided
evidence that the Hippo signaling component, TEAD1 decreases in re-
sponse to compressive force stimuli, which contributes to reduction of
OPG and thereby promoting osteoclastogenesis of co-cultured osteo-
clast precursors.

Besides its role in mediating osteoclastogenesis during OTM, aber-
rant RANKL/OPG could lead to a variety of diseases involving bone
metabolism, such as osteoporosis, rheumatoid arthritis, multiple mye-
loma and periodontitis (Barbato et al., 2015; Phetfong et al., 2016;
Walsh & Choi, 2014). Meta-analyses revealed that OPG polymorphisms
are associated with bone mineral density and osteoporosis (Sun et al.,
2014, Wang et al., 2013); circulating OPG levels are elevated in rheu-
matoid arthritis (Wang et al., 2017); OPG concentration is also asso-
ciated with the presence and severity of peripheral arterial disease in
type 2 diabetes mellitus (Demkova, Kozarova, Malachovska, Javorsky,
& Tkac, 2018). These findings indicate important roles of OPG in
maintaining bone homeostasis. As regard to molecular mechanisms
regulating OPG expression, estrogen was reported to stimulate OPG
expression at transcriptional level through the estrogen receptor (ER),
and at post-transcriptional level via miRNA (Hofbauer et al., 1999; Jia,
Zhou, Zeng, & Feng, 2017). Other transcription factors of OPG include
homeobox family members (Hox) (Wan, Shi, Feng, & Cao, 2001), smad
(Thirunavukkarasu et al., 2001), transcription factor 4 (TCF-4) (De Toni
et al., 2008) and GATA binding protein 3 (GATA3) as previously re-
ported (Kao & Stankovic, 2015). Our study demonstrated that TEAD1
positively regulates OPG expression, through binding on a potential
enhancer element ˜22 kilobases away from OPG promoter, and this
occupancy declines with force application. Therefore, we identified
TEAD1 as a novel regulator of OPG during mechanotransduction. Fu-
ture work should be carried out as to uncover the precise binding site of
TEAD1 on the enhancer element, as well as whether the binding site
possesses enhancer activity examined by reporter assay. Given the
critical role of OPG in the occurrence of bone metabolism-related dis-
eases, it is plausible to speculate that TEAD1-mediated OPG regulation
might also be involved in pathogenesis of these diseases.

Hippo cascade has been identified as a mechanotransduction sig-
naling pathway responsive to different kinds of physical cues, including

cell matrix stiffness, cell geometry, cell density, cell adhesion and the
external mechanical stimuli (Meng et al., 2016). Mechanical signals, in
most scenarios, modulate phosphorylation events of the core kinase
cascade with YAP/TAZ phosphorylation finally affected, which further
influences the nuclear localization of YAP/TAZ and the recruitment of
TEADs transcription factors (Meng et al., 2016; Schroeder & Halder,
2012). It is previously reported that static equiaxial strain could induce
dynamic nuclear YAP localization in human PDLCs (Huelter-Hassler,
Tomakidi, Steinberg, & Jung, 2017). However, transcriptional changes
of Hippo components in response to compressive force and their impact
on osteoclastogenesis are still not clear. Our study for the first time
identified TEAD1 as a compressive force responsive gene in human
PDLCs, which decreases upon force application and correlates with the
expression of OPG. OPG expression was also affected by pharmaceutical
interference of Hippo components, suggesting that Hippo signaling
might be implicated in osteoclastogenesis during OTM. Future work
should be performed to unravel the upstream molecular mechanisms
causing the transcriptional decline of TEAD1, which are likely to be
orchestrated by epigenetic changes upon force application.

In summary, our results highlighted an intriguing mechanism by
which OPG is regulated by force-induced decline of TEAD1, thus pro-
viding new insights into molecular mechanisms of osteoclastogenesis
mediated by PDLCs during OTM.
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