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Abstract
Objectives Concentrated growth factors (CGF) exhibit superior potential for periodontal tissue regeneration; however, little is
known about the release pattern of CGF over time. This study was designed to investigate the in vitro release pattern of growth
factors and cytokines from CGF in deproteinized bovine bone mineral (DBBM) and intrafibrillarly-mineralized collagen (IMC).
Materials and methods CGF, CGF mixed with DBBM (CGF-DBBM), and CGF mixed with IMC (CGF-IMC) were cultured
in vitro for 28 days and media supernatants were collected after 24 h, 72 h, and 7, 14, 21, and 28 days respectively. The factors
investigated included platelet-derived growth factor-BB, transforming growth factor beta 1, vascular endothelial growth factor,
insulin-like growth factor 1, basic fibroblast growth factor, C3a, and C5a.
Results We found that CGF-IMC released the highest total amount of cytokines compared to CGF and CGF-DBBM (p < 0.01).
Growth factors were continuously released till 28 days. The release curves of most growth factors and cytokines included two
peaks at 24 h and during 14 to 28 days. CGF-IMC released much more growth factors than CGF and CGF-DBBM during 14 to
28 days.
Conclusions Within the limitation of the study, CGF-IMC offers advantages over CGF-DBBM and CGF for sustained release of
growth factors and cytokines.
Clinical relevance This study provides strong evidence for clinical use of IMC used as a new carrier for CGF in periodontal
regeneration. We need more studies to investigate the effect of sustained release of growth factors in tissue regeneration.
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Introduction

Periodontitis is an inflammatory disease that leads to the loss
of tooth-supporting tissues. The ultimate goal of periodontitis
treatment is complete and predictable periodontal tissue re-
generation. As signaling molecules, polypeptide growth fac-
tors control tissue regeneration at every stage [1]. In vitro
recombination of exogenous growth factors is time-
consuming and costly, and its safety is still under study. In
addition, the complex interactions and networks between en-
dogenous growth factors cannot be simulated in vitro [2].
Therefore, how to obtain abundant endogenous growth factors
has become one of the hotspots in tissue engineering field.

Platelets are one of the major resources of autogenous
growth factors. Platelet concentrates are derived from autolo-
gous blood. Their simple collection process and clinical appli-
cation without risk have made them increasingly used to en-
hance tissue healing and regenerative procedures in dental and
maxillofacial surgery [3], wound healing [4], and skin
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regeneration [5]. Platelet-rich plasma (PRP) is the first gener-
ation of platelet gels for periodontal regeneration therapy [6],
while the potential benefits of this procedure have been criti-
cized. Many of the discrepancies are related to the lack of
more suitable standardization methods and definition of dif-
ferent PRP preparations, as the protocols and biological and
surgical techniques differ widely among different research
groups [7, 8]. Furthermore, PRP contains anticoagulants,
which interfere with the natural healing process of the human
body. Platelet-rich fibrin (PRF), the second generation of
platelet concentrates, has shown the ability for enhanced soft
tissue regeneration [9]. PRF overcomes the need for exoge-
nous thrombin. Kobayashi et al. have proven that the advan-
tage of PRP is the release of significantly higher proteins at
earlier time points, whereas PRF displayed a continual and
steady release of growth factors over a 10-day period [10].
However, the species of growth factors in PRF are relatively
simple due to the single centrifugal force.

Concentrated growth factors (CGF), a novel generation of
platelet concentrates product [11–14], are made by centrifug-
ing blood samples at alternating and controlled speeds.
Different centrifugation speeds permit the isolation of a large
and dense fibrin matrix with abundant growth factors.
Previous studies have demonstrated high levels of growth fac-
tors contained in CGF [15, 16]. Theoretically, growth factors
in CGF should be released slowly without the addition of
exogenous thrombin, close to the natural process of tissue
healing. However, little is known about the release pattern of
growth factors from CGF over time. Furthermore, CGF are
often used in combination with a variety of biomaterials in
regenerative medicine and tissue engineering [17, 18]. There
is no data available to date on the release pattern of growth
factors from CGF mixed with biomaterials. Therefore, the
objective of this study was to investigate the in vitro release
pattern of growth factors and cytokines from CGF, and CGF
mixed with deproteinized bovine bone mineral (DBBM) and
intrafibrillarly mineralized collagen (IMC) over time.

Materials and methods

Volunteers

The volunteers of this study were selected from patients re-
ferred to the Department of Periodontology, at the First clini-
cal division, Peking University School and Hospital of
Stomatology. The study was performed in accordance with
the Helsinki Declaration of 1975, as revised in 2000, and the
study protocol was reviewed and approved by the university
ethical board (Peking University, School and Hospital of
Stomatology). The subjects were enrolled to this study based
on the following inclusion criteria: (1) age > 18 years, (2) sys-
temically healthy, (3) diagnosed as severe chronic

periodontitis, and (4) non-smokers. Exclusion criteria
consisted of donors with systemic diseases, pregnant and/or
lactating women, patients taking any drug known to affect the
number or function of platelets in the past 3 months, and
patients with abnormal platelet counts. All the patients re-
ceived periodontal non-surgical treatment (oral hygiene in-
structions, full-mouth scaling, and root planning) 1 month be-
fore surgery. Nine patients were included in this study. All
patients were informed of the nature of this study and signed
an informed consent prior to their inclusion.

Preparation of CGF

CGF were produced as follows: 9 mL of blood was drawn
from each donor by venipuncture of the antecubital vein under
empty stomach in the morning. The blood was collected in
sterile Vacuette tubes with white cap (Greiner Bio-One,
GmbH, Kremsmunster, Austria) without anticoagulant solu-
tions. These tubes were then immediately centrifuged
(Medifuge, Silfradentsrl, Sofia, Italy) using a program with
the following characteristics: 30 s acceleration, 2′ 408×g, 4′
323×g, 4′ 408×g, 3′ 503×g, and 36″ deceleration and stop
(RCFave) [11].

At the end of the process, two blood fractions were created:
a superior liquid phase and the lower red blood cell (RBC)
layer. The top 2 mL of the superior phase was platelet-poor
plasma (PPP). The remaining interim layer was mainly repre-
sented by platelet-rich plasma. Platelets, white blood cells, and
CD34-positive stem cells were located at the bottom interface.
CGFwas composed of the remaining interim layer, the bottom
interface, and the top 3 mm of RBC layer. The PPP layer was
aspirated and stored at − 80 °C. CGF was aspirated for use.

Biomaterials

Biomaterials are widely used as scaffolds in regenerativemed-
icine and tissue engineering. Two biomaterials were selected
in the present study. One was a representative of classical,
xenogeneic bone implants DBBM (Bio-Oss, Geistilich,
Switzerland); the other one was a bone-like IMC, which was
proven to be a good bone graft substitute with a great regen-
eration potential for treating large bone defects in our previous
studies [19–22]. Briefly, IMC was prepared by reconstituting
collagen fibrils from a type I tropocollagen (Corning®,
100 mg, 9.46 mg/mL) using simulated body fluid as a phos-
phate source, white Portland cement (Lehigh Cement Co.,
Allentown, PA) as a calcium source, and polyacrylic acid
(Mw 2000, Millipore Sigma, St. Louis, MO) as a stabilizer
of amorphous calcium phosphate [23]. After 7 days, the
fibrillized collagen suspension was collected by centrifuga-
tion, poured into the plastic molds, and lyophilized to form
sponge-like porous scaffolds.
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Scanning electron microscopy

To investigate the microstructure, these two types of scaffolds
were dehydrated in a graded series of ethanol (50, 70, 80, 85,
90, 95, and 100%), critical point dried, and observed with
scanning electron microscopy (SEM) (S-4800, Japan) at
15 kV. Elemental analysis of the scaffolds was performed
using energy-dispersive X-ray spectroscopy (EDS) coupled
to the SEM.

Grouping

As soon as CGF was aspirated and mixed evenly, it was di-
vided into three groups. The first group was CGF alone. The
second group was CGF mixed with DBBM (CGF-DBBM),
and the third group was CGF mixed with IMC (CGF-IMC).
The volume of each piece of IMC was 0.4 mL. Therefore, the
volume of CGF in each group and the volume of DBBM
particles were also 0.4 mL. Then CGF and the mixture were
allowed to coagulate for 20 min at room temperature (Fig. 1).
CGF, CGF mixed with DBBM, and CGF mixed with IMC
were placed in separate Eppendorf tubes covered with 2 mL of
culture medium (Dulbecco’s modified Eagle mediumwith 1%
penicillin/streptomycin), and incubated at 37 °C in a humidi-
fied atmosphere with 5% CO2 for 28 days. During culture, the
whole medium was collected at 1, 3, 7, 14, 21, and 28 days
post incubation, and an equal volume of fresh medium was
added back to each tube. All collected cultures were stored at
− 80 °C for further analysis.

Quantification of cytokines

Representative growth factors in platelets including platelet-
derived growth factor-BB (PDGF-BB), transforming growth
factor beta 1 (TGF-β1), vascular endothelial growth factor
(VEGF), insulin-like growth factor 1 (IGF-1), and basic fibro-
blast growth factor (bFGF) were investigated. Complement
C5a fragment has been shown to be involved in the recruitment

of dental pulp stem cells (DPSCs) [24, 25]. C3a could
promote proliferation of DPSCs and fibroblast, and spe-
cifically guide fibroblast recruitment [24]. Therefore, the
levels of C3a and C5a at different time points were also
investigated in the present study.

When all the samples were collected, the levels of those
cytokines were evaluated using double antibody sandwich
enzyme-linked immunosorbent assay (ELISA) kits (R&D,
Minneapolis, MN, USA; Abcam, Cambridge, Cambridgeshire,
UK) according to the manufacturer’s instructions: Human
PDGF-BB Quantikine ELISA Kit (R&D), Human
TGF-β1Quantikine ELISA Kit (R&D), Human VEGF
Quantikine ELISA Kit (R&D), HumanIGF-1Quantikine
ELISA Kit (R&D), Human FGF basic Quantikine ELISA Kit
(R&D), Human Complement Component C5a DuoSet ELISA
(R&D), and Human Complement C3a des Arg ELISA Kit
(Abcam). To detect the total amount of TGF-β1, the latent form
of TGF-β1 was first converted into the active form according to
the manufacturer’s instructions. OD values were measured at
450 nm absorbance using a microplate reader (Bio-Rad, USA).
The concentrations of different cytokines were determined
according to the manufacturer’s instructions. Standard
curves were generated using standards provided by each
kit. The absorbance from wells containing medium only
were set as the blank and subtracted from the test wells
readout. Triplicates were performed for all assays.

Statistical analysis

All reported values are the means of triplicate samples. Data
were analyzed using SPSS version 10.0 (Chicago, IL, USA).
The levels of total proteins released in different scaffolds were
analyzed by one-way analysis of variance (one-way
ANOVA). Statistical analysis of the data on release dynamics
was performed by two-way analysis of variance (two-way
ANOVA) followed by the Turkey post-hoc test for compari-
sons. The levels of cytokines in PPP were also compared with
those in CGF with significance set at the p ≤ 0.05.

Fig. 1 The gross images of
coagulated form of CGF-DBBM
(a) and CGF-IMC (b)
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Data availability The datasets generated during and/or ana-
lyzed during the current study are available from the corre-
sponding author on reasonable request.

Results

Characterization of scaffolds

Representative SEM images and EDS curves of DBBM and
IMC scaffolds were shown in Fig. 2. The massive DBBM
scaffold was composed of micro-sized apatites with Ca/P ratio
of 1.54 ± 0.06, whereas the IMC scaffold showed a highly
porous structure with interconnected macropores of 128.3 ±
24.7 μm. Under high magnification, the IMC exhibited bone-
like subfibrillar nanostructure without any apatites formed
around the collagen fibrils. The presence of nanoapatites with-
in the fibrils in the IMCwas confirmed by EDS, where the Ca/
P ratio was 1.52 ± 0.06, indicating of calcium-deficient
nanoapatites.

Total protein release

The total accumulated protein release was calculated for those
growth factors and cytokines evaluated (Fig. 3). It was found
that CGF-IMC released the highest total amount of cytokines
when compared to CGF-DBBM or CGF except for bFGF
(p < 0.01). CGF-IMC and CGF-DBBM released significantly
more bFGF compared to CGF alone (p < 0.001), while there
was no significant difference found in the levels of bFGF
released by CGF-IMC and CGF-DBBM (p > 0.05).
Furthermore, the accumulated protein of PDGF-BB, bFGF,
and C3a in CGF-DBBM was significantly higher than that
in CGF alone (p < 0.01). While the accumulated protein of

TGF-ß1, VEGF, IGF-1, and C5a in CGF-DBBM and CGF
showed no significant difference (p > 0.05).

Dynamics of accumulated release

Differential dynamics of release of growth factors and cyto-
kines in CGF, CGF-DBBM, and CGF-IMC were observed in
Fig. 4.Values are expressed as the cumulative mean quantity
of proteins at different time points (24 h, 72 h, 7 days, 14 days,
21 days, and 28 days). Figure 4 showed persistent releases of
all the proteins evaluated from CGF, CGF-DBBM, and CGF-
IMC during 28 days in vitro.

The levels of growth factors released in CGF rose slowly
during 28 days while the levels of TGF-ß1, bFGF, and C5a in
CGF rose significantly from 14 days (p < 0.05). The levels of
growth factors released in CGF-DBBM increased significant-
ly from 72 h (C5a), 7 days (IGF-1 and bFGF), or 14 days
(PDGF-BB, TGF-β1, VEGF, and C3a) (p < 0.05). The levels
of growth factors released in CGF-IMC increased dramatical-
ly from 7 days (VEGF, IGF-1, and C5a) or 14 days (PDGF-
BB, TGF-β1, bFGF, and C3a) (p < 0.05). Comparison be-
tween three groups showed that, except TGF-β1, the levels
of the other growth factors and cytokines released in CGF-
IMC were several times of those in CGF and CGF-DBBM
from 14 days and the trend continued to 28 days (p < 0.01).

Dynamics of release percentage

The kinetics of percentage of the growth factors released at
different time point was displayed in Fig. 5. The trends of the
kinetics of percentage of total release were consistent with the
kinetics of accumulated release.

Analysis of release kinetics showed that the most popular
pattern was bimodal releasing with a low peak value at 24 h

Fig. 2 a Representative (left) low- and (right) high-magnification SEM images of DBBM and IMC. b EDS of DBBM and IMC
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and a high peak value at 14 days (PDGF-BB in three groups,
IGF-1 in CGF-DBBM), 21 days (VEGF in CGF and CGF-
DBBM, IGF-1 in CGF, C3a in CGF-IMC, C5a in 21 days), or
28 days (VEGF in CGF-IMC, IGF-1 in CGF-IMC, bFGF in
all three groups, C3a in CGF). The release of TGF-β1 also
showed a bimodal pattern but with a high peak value at 24 h
and a low peak value at 14 days (CGF-IMC) or 21 days (CGF
and CGF-DBBM). The release of C3a showed a similar bi-
modal pattern with a high peak value at 24 h and a low peak
value at 21 days. The release of C5a in CGF-DBBM and
CGF-IMC showed a multimodal pattern: a low peak at 24 h,
and two high peaks at 14 and 28 days.

Discussion

Platelet derivatives have been widely used in wound healing,
tissue regeneration, and tissue engineering [26–28]. As a nov-
el generation of platelet concentrates product, CGF, usually

combined with graft materials, has been applied in soft and
hard tissue healing and regenerative medicine, such as peri-
odontal regenerative therapy [12] and bone regeneration [14,
29, 30]. Although CGF has been demonstrated to contain high
concentrations of certain growth factors, the release kinetics of
different growth factors and cytokines in CGF was still un-
clear. This study provides an important evidence for the re-
lease kinetics of CGF and CGF combined with IMC and
DBBM.

Our data showed that the highest release occurred in
CGF-IMC for all growth factors and cytokines investigat-
ed except bFGF. Then, CGF-DBBM released more quan-
tities of PDGF-BB, bFGF, and C3a than CGF alone. Several
factors can influence total release as well as the dynamics of
growth factor release. A possible explanation is the architec-
ture of different scaffolds. Compared to structured fiber net-
work in CGF, DBBM and IMC provided more scaffolds for
sustained release of growth factors. The spongy morphology
and subfibrillar nanostructures in the IMC provide a much

Fig. 3 The total accumulated
protein released over 28 days.
Data were presented as mean ±
SD from triplicate measurements
of nine samples. Statistical
evaluation was done using one-
way ANOVA. Significant differ-
ences among CGF, CGF-DBBM,
and CGF-IMC for each factor
were indicated: *p < 0.05, **p <
0.01
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larger interface area compared to DBBM. The second reason
may be the components of different scaffolds. DBBM ismain-
ly composed of hydroxyapatites, while IMC was a composite
of nanohydroxyapatites and collagen fibrils. Fufa et al. found
that type I collagen was a safe and effective alternative to
bovine thrombin in activating PRP and stimulating growth
factors release from the platelets [31]. In another study,
Zhang et al. fabricated a novel scaffold that integrates PRP
activated by type I collagen, and found that collagen/PRP
scaffolds provided a long period release of growth factors
compared to thrombin-activated PRP [32]. Collagen is much
more efficient at loading growth factors when compared to
DBBM [33, 34]. Furthermore, it is well known that cell adhe-
sion is greatly affected by collagen-containing scaffolds and
collagen supports better cell attachment [35, 36]. Therefore,
we speculated that the collagen component in IMC may be an
activator for CGF and provided a carrier for the controllable
release of growth factors. Another possible explanation is
Bnano.^ In the present study, a 3D IMC was fabricated using

a modified bottom-up biomimetic approach, enabling the for-
mation of subfibrillar nanostructures at the molecular and
nanoscale levels. Biological activity of nanoparticles can be
dictated by their composition, size, and charge [37]. This hy-
pothesis is also supported by the differential degrees of plate-
let aggregation induced by multiwalled and single-walled
nanotubes, C60 fullerenes, mixed carbon nanoparticles, or
collagen-coated latex nanoparticles compared with inhibition
of platelet aggregation by positively charged nanoparticles or
those formed from PEGylated and nonPEGylatedcetyl
alcohol/polysorbate nanoparticles [38–42]. The IMC used in
the present study might participate in modulating platelets
secretion. Further studies are needed to investigate the possi-
ble mechanism of Bnano^ on CGF or platelets functions.

The release pattern of the growth factors analyzed in our
study showed sustained release from CGF, CGF-DBBM, and
CGF-IMC till 28 days. The release curves of most growth
factors and cytokines included two peaks, one occurring at
24 h, and the other occurring during 14 to 28 days. C5a

Fig. 4 Kinetics of growth factor
accumulated release from CGF,
CGF-DBBM, and CGF-IMC.
Release of each factor was
determined at each time point
(24 h, 72 h, 7, 14, 21, and
28 days). Asterisk: compared to
other time points in the same
group, p < 0.05; triangle:
compared to the same time point
in CGF and CGF-DBBM group,
p < 0.05
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released in CGF-IMC showed a triple humped releasing
curve, peaking at 24 h, 14 days, and 28 days. Furthermore,
CGF-IMC released much more growth factors compared to
CGF and CGF-DBBM during 14 to 28 days. The immediate
release peak at 24 h could be attributed to instant release from
activated platelets during centrifuge or simple diffusion from
plasma. The late release peak during 14 to 28 days could be
explained by release of growth factors after degradation of
fibrin structure and production of growth factors by the leu-
kocytes present in CGF. In the data obtained from previous
studies, fibrin clots can bemaintained without substantial deg-
radation under similar protease-free conditions for longer than
1 week [43, 44]. CGF have shown a much larger, denser,
solider, and more structured fibrin network consistency com-
pared to natural fibrin clot. Therefore, the dissolving time of
fibrin structure in CGF might be longer than usual fibrin clot.
This could partly explain the time when the late peak
occurred.

The centrifugation speeds we used for CGF preparation
were between 323×g and 503×g. More recently, lower centri-
fugation speeds and time have been proposed to further opti-
mize the number of leukocytes and subsequent release of
growth factors from PRF formulations. Fujioka-Kobayashi
et al. have demonstrated that modifications to centrifugation
speed and time with the low-speed concept could favor an
increase in growth factor release from PRF clots, which might
in turn directly influence tissue regeneration by increasing
fibroblast migration, proliferation, and collagen mRNA levels
[45]. Utilizing CGF with lower centrifugation speeds will be a
tendency in the future.

The results presented in this study have important biomed-
ical indications that IMC scaffolds could be used as a carrier
for sustained release of growth factors from autogenous CGF
in tissue regeneration therapy. In the future work, we will
continue to investigate the release dynamics of growth factors
in CGF in vivo.

Fig. 5 Kinetics of growth factor
release from CGF, CGF-DBBM,
and CGF-IMC. The amounts
released were expressed as a
percentage of total release at each
time point
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Conclusions

In summary, the release pattern of growth factors from CGF,
CGF-DBBM, and CGF-IMC were different. CGF-IMC offers
advantages over CGF-DBBM and CGF. CGF-IMC can re-
lease higher levels of growth factors and provide a sustained,
long-time release. IMC could be used as a new carrier for
sustained release of growth factors in CGF. We need more
studies to investigate the effect of sustained release of growth
factors on different types of cells, and the in vivo effect in the
field of regenerative medicine.
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