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a b s t r a c t

Objective: The enamel matrix derivative (EMD) has a positive effect on the proliferation of

human periodontal ligament cells and the healing of periodontal tissues. The aim of this

study was to evaluate the effects of EMD on the proliferation and differentiation of human

dental pulp cells (hDPCs) in vitro.

Methods: hDPCs were isolated from human impacted third molars and cultured in vitro.

After treatment with100 mg/mL EMD, the proliferation of hDPCs was determined by a cell

counting kit 8 (CCK8) assay. After incubation in EMD osteogenic induction medium for 14

days, the osteogenic differentiation of hDPCs was evaluated by alkaline phosphatase (ALP)

activity, alizarin staining and the expression of osteogenesis-related genes.

Results: The EMD osteogenic induction medium enhanced the proliferation of hDPCs. After

osteogenic induction, EMD increased the osteogenic potential of hDPCs, as measured by

alkaline phosphatase activity and calcium accumulation; the expression levels of osteo-

genesis-related genes, such as ALP, DSPP, BMP, and OPN were also upregulated. In addition,

the expression levels of odontogenesis-related transcription factors Osterix and Runx2 were

upregulated.

Conclusions: EMD could enhance the mineralization of hDPSCs upregulated the expression

of markers for odontoblast/osteoblast-like cells. Further studies are required to determine if

EMD can improve pulp tissue repair and regeneration.

# 2013 Published by Elsevier Ltd.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.intl.elsevierhealth.com/journals/jden
1. Introduction

The health of teeth depends on the integrity of the hard tissue

and the activity of the pulp and periodontal tissues, which are

responsible for supplying nutrition to the teeth. Lack of

nourishment provided by the pulp tissue can increase the risk of

tooth fracture. In immature permanent teeth, impaired root

development is another outcome associated with lack of

nutritional support of the pulp. Maintaining the viability of

the residual pulp tissue as far as possible is the main
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consideration in the procedure of pulp therapy. Direct pulp

capping and pulpotomy are therapeutic approaches for exposed

vital pulp, in which the formation of reparative dentine is

facilitated by sealing the pulpal wound with a dental material.1

After direct pulp capping and pulpotomy, the differentiation

and proliferation of dental pulp cells (DPCs) are influenced by

the activity of dental materials.2,3

Emdogain (Straumann AG, Basel, Switzerland) is a com-

mercial enamel matrix derivative (EMD), derived from porcine

developing enamel matrix. The main component of EMD is

amelogenins. In addition, EMD contains low concentrations of
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matrix metalloproteinases and growth factors, including

transforming growth factor b1 (TGF-b1), BMP-2 and BMP-4.4

Several studies have shown that EMD influences the migra-

tion, attachment, proliferative capacity and biosynthetic

activity of periodontal ligament cells.5,6 Thus, it is considered

effective in improving the healing process of replanted teeth

and teeth with periodontal diseases.7,8 Recently, it was

suggested that EMD could also be used for pulp regeneration.

Previous studies showed that amelogenin participates in the

maturation and growth of dental pulp cells during tooth

formation.9 Animal experiments and clinical studies showed

that EMD promotes reparative processes in the dental pulp.10

The addition of EMD can promote periodontal cell

proliferation11; therefore, it was hypothesized that EMD exerts

its therapeutic effect by providing an extracellular matrix that

forms a more natural microenvironment for cells, stimulating

cell attachment and differentiation.12 EMD is also reported to

induce a process mimicking normal odontogenesis and can

thereby serve as a biologically active pulp dressing agent,

which specifically induces pulpal wound healing and hard

tissue formation without affecting healthy pulp.13,14 It has

been demonstrated that when mineral trioxide aggregate

(MTA) and EMD were applied to human DPCs together, the

cells differentiated into odontoblast-like cells, suggesting a

synergistic effect of these two materials.15 A recent study

reported that Emdogain combined bismuth oxide containing

Portland cement could improve cell growth and differentiation

of human DPCs (hDPCs).16 However, the direct effects of EMD

on dental pulp, and the underlying mechanisms remain

unclear. The aim of this study was to evaluate the effects of

EMD on the proliferation and differentiation of hDPCs in vitro.

2. Materials and methods

EMD gel (30 mg/mL and 0.7 mL) (Emdogain; Biora AB, Malmö,

Sweden) was diluted with Eagle’s medium (a-MEM, GIBCO/

BRL, Grand Island, NY, USA) to a final concentration of

100 mg/mL.

2.1. Cell culture

Human impacted third molars were collected from an adult

(22 years, male) at the clinic of the Peking University School of

Stomatology and used to culture hDPCs. The patient provided

written informed consent, and the ethical committee of the

Medical School of Peking University approved the protocol to

obtain extracted teeth. After the teeth surfaces had been

cleaned, the teeth were cut around the cementum-enamel

junction with sterilized dental fissure burs to expose the pulp

chamber. The pulp tissue was gently separated from the

crown and root, and subsequently digested in a solution of

3 mg/mL collagenase type I (Sigma, St. Louis, MO, USA) and

4 mg/mL dispase (Sigma) for 1 h at 37 8C. Single-cell suspen-

sions were obtained by passing the cells through a 70-mm

strainer (Falcon, BD Biosciences, San Jose, CA, USA).

Single-cell suspensions (0.5–1.0 � 103/well) of hDPCs were

seeded into 6-well plates (Costar, Corning Life Sciences,

Tewksbury, MA, USA) containing a-MEM supplemented with

15% foetal bovine serum (FBS; Hyclone Thermo Scientific,
Logan, UT, USA), 100 mg/mL penicillin, 100 mg/mL streptomy-

cin (Sigma, St. Louis, USA), 100 mg/mL EMD and incubated at

37 8C in 5% CO2. The control medium contained a-MEM,

antibiotics and 15% FBS.

To induce differentiation, cells were cultured in a control

medium with osteogenic induction media (OSTEO), compris-

ing 50 m g/mL ascorbic acid (Sigma), 10 mmol/L b-glyceropho-

sphate (Sigma), and 0.1 m mol/L dexamethasone (Sigma), as

described previously.6 EMD (100 mg/mL was added to the

OSTEO as the experimental group (EMD).

2.2. Determination of EMD concentration

hDPCs (1 � 103/well) expended ex vivo were seeded into 96-

well plates, cultured with EMD (0, 1, 10, 100 mg/mL) for 24 h in

37 8C. A cells counting kit-8 (CCK-8, Dojindo, Kumamoto,

Japan) assay was then carried out and repeated five times for

each sample to evaluate the number of viable cells, according

to the manufacturer’s instructions. Untreated cells were used

as the control group. 10 mL of 2-(2-methoxy-4-nitrophenyl)-3-

(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, mono-

sodium salt was added to each well before the culture plate

was incubated at 37 8C for 4 h. Absorbance was measured at

450 nm in a microplate reader. The mean values of the optical

density were calculated and analyzed statistically for cell

number at each dilution of the samples (version 13.0; SPSS,

Chicago, IL, USA). The dilution of EMD at which hDPCs had the

highest cell viability was chosen for subsequent studies.

2.3. Growth tendency study

According to the above experiment, 100 mg/mL EMD was

chosen for the growth tendency study, with the untreated

hDPCs as the control group. hDPCs (1 � 103/well; expanded ex

vivo) were seeded into five 96-well plates separately. At 1, 3, 5

and 7 days after cell seeding, a CCK-8 assay was carried out

with eight replications to evaluate the number of viable cells,

following the same procedure as described in ‘‘determination

of EMD concentration’’. The growth curves of the two groups

were analyzed using SPSS software (version 13.0; SPSS,

Chicago, IL, USA).

2.4. Alkaline phosphatase activity

After 7 and 14 days culture in the OSTEO, EMD and normal

control medium, cells were rinsed three times in phosphate-

buffered saline (PBS) and then lysed for 10 min in 100 mM Tris

base with 1% Triton-X100. Alkaline phosphatase activity (AKP

activity) was determined in the lysate by measuring the

release of p-nitrophenol using SIGMAFASTTM p-nitrophenyl

phosphate (Sigma) as a substrate after 45 min at 37 8C.

Absorbance was measured at 420 nm using a Microplate

Reader (ELx808IU, BioTek, Winooski, VT, USA).

2.5. Alizarin Red staining

After 7 and 14 days of culture in the EMD, OSTEO and normal

control medium, the hDPCs were fixed in 4% paraformaldehyde

for 30 min and washed in PBS, and the mineralization of the

extracellular matrix was detected by staining with 1% Alizarin



Table 1 – Semi-quantitative real-time PCR primers.

Gens Primer sequence (50-30) GenBank number

ALP F: 50-ATGGGATGGGTGTCTCCACA-30 XM_005245818.1

R: 50-CCACGAAGGGGAACTTGTC-30

DSPP F: 50-TTTGGGCAGTAGCATGGGC-30 XM_005555378.1

R: 50-CCATCTTGGGTATTCTCTTGCCT-30

BMP-1 F: 50-GCCACGTTTCCATCGTTCG-30 XM_003823603.1

R: 50-AGAATGTGTTCCGAGCGTAATG-30

OPN F: 50-CTCCATTGACTCGAACGACTC-30 XM_003265675.2

R: 50-CAGGTCTGCGAAACTTCTTAGAT-30

OSTERIX F: 50-GAGGCAACTGGCTAGGTGG-30 XM_005268643.1

R: 50-CTGGATTAAGGGGAGCAAAGTC-30

RUNX2 F: 50-TGGTTACTGTCATGGCGGGTA-30 XM_005696518.1

R: 50-TCTCAGATCGTTGAACCTTGCTA-30

GAPDH F: 50-ATGGGGAAGGTGAAGGTCG-30 XM_005569913.1

R: 50-GGGGTCATTGATGGCAACAATA-30

j o u r n a l o f d e n t i s t r y 4 2 ( 2 0 1 4 ) 5 3 – 5 9 55
Red S for 10 min. Pictures of Alizarin Red S staining were

scanned using a scanner and the density of staining in each

group was analyzed by Scion image software (Scion Corpora-

tion, Maryland).

2.6. Semi-quantitative real-time PCR

After 14 days of culture in the EMD, OSTEO and normal control

medium, the of hDPCs were rinsed three times in PBS and the

total RNA of the cells was extracted by using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA), according to the manufac-

turer’s recommendations. Isolated RNA was then subjected to

reverse transcription using an Oligo dT primer and superscript

II reverse transcriptase (Invitrogen), according to manufac-

turer’s instructions. Semi-quantitative real-time polymerase

chain reaction (PCR) was performed using the ABI Prism 7000

Sequence Detection System (Applied Biosystems, Carlsbad,

CA, USA) with SYBR green (Roche, Shanghai, China). The

reaction conditions comprised 70 8C for 5 min; 42 8C for 60 min

and 95 8C for 10 min. Primer sequences are detailed in Table 1.

2.7. Statistical analysis

Statistical analysis was performed using the paired Student’s t

test in SPSS. The level of statistical significance was set at

P � 0.05.

3. Results

3.1. Determination of the most effective EMD
concentration

hDPCs viability increased in an EMD dosage-dependent

manner. Among the EMD concentration used, hDPCs showed

the highest cell viability compared to the untreated group

(P � 0.05) at an EMD concentration of 100 mg/mL (Fig. 1A).

3.2. Effects of EMD on the growth of hDPCs

The CCK-8 results showed that cells incubated with EMD had a

higher growth rate than those incubated with normal medium

alone at 1, 3, 5 and 7 days of the cultivation (P < 0.05) (Fig. 1B).
3.3. Effects of EMD on the odontoblastic differentiation of
hDPCs

To investigate the effect of EMD on the odontoblastic

differentiation of hDPCs, we assessed the levels of ALP

activity, mineral nodule deposition by Alizarin Red S staining,

and messenger RNA expression of differentiation markers.

The results showed that the ALP activity of the EMD group

increased compared with that of the OSTEO group at 7 and 14

days of cultivation (both P < 0.05). The ALP activity of the

OSTEO group was higher than the control group at 7 and 14

days of cultivation (both P < 0.05) (Fig. 1C). There were more

calcium deposition in the EMD group than in the OSTEO group

at 7 and 14 (both P < 0.05) days of induction (Fig. 2). EMD

significantly increased the expression levels of the odonto-

genic marker genes ALP (P < 0.05), dentine sialophosphopro-

tein (DSPP) (P < 0.05), bone morphogenetic protein 1 (BMP1)

(P < 0.05) and osteopontin (OPN) (P < 0.05) (Fig. 3A), and the

transcription factors OSTERIX (P < 0.05), RUNX2 (P < 0.05)

(Fig. 3B) compared with the OSTEO and the control group at

14 days of cultivation.

4. Discussion

Vital pulp therapy, including direct pulp capping and

pulpotomy, minimizes pulpal injury by protecting the pulp

tissue from the toxic effects of chemical, bacterial, mechanical

or thermal insult.17 Therefore, vital pulp therapy treats

reversible pulpal injuries by sealing the pulp and stimulating

the formation of tertiary dentine,18 which is classified as either

reactionary or reparative. Reactionary dentine, which is

formed by surviving odontoblast cells in response to milder

stimuli, is of higher quality than reparative dentine, which is

formed by dental pulp cells in response to stronger stimuli.18

Milder stimuli are recommended for pulp-capping materials to

induce the more tubular and calcified tertiary dentine.18

The extent to which growth or differentiation agents

applied directly to pulp tissue can induce reparative dentine

has been a focus of many biomedical trials. As it is

commercially available and economical compared with other

bioactive agents, clinicians have recently become interested in

using EMD as a pulp capping material. EMD is a gel-type agent



Fig. 1 – The effects of EMD on the proliferation and ALP activity of hDPCs. The determination of the effective EMD

concentration by dosage-dependant experiment (A). The hDPCs growth curve for the EMD-treated group and control group

(B). The effects of EMD and osteogenic induction on ALP activity of hDPCs (C). * comparison between control and OSTEO

group; # comparison between OSTEO and EMD group.
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that does not rapidly diffuse into the pulp tissue.19,20 EMD has

also been shown to induce reparative dentine and odontoblast

differentiation in experimental pulp capping.21,22

The differentiation and mineralization of osteoblasts and

odontoblasts involve an initial period of extracellular matrix

biosynthesis and proliferation, which is followed by cell
Fig. 2 – The effects of EMD on the formation of calcification nod

induction medium alone and EMD for 7 days and 14 days and th

of Alizarin Red staining was shown (A). The relative staining de

(B). * comparison between the control and other groups.
differentiation.23 In the early stage of this process, the matrix

matures, and specific proteins associated with the pulp cells

phenotype, such as ALP, can be detected. hDPCs have been

well characterized and can be induced to further differentiate

into odontoblast/osteoblast-like cells.24 In the current study,

EMD-treated hDPCs exhibited more rapid proliferation and a
ules in hDPCs. hDPCs were cultured with osteogenic

en stained with Alizarin Red. A representative photograph

nsity was set as 100%, and the statistic results were shown



Fig. 3 – The effects of EMD on messenger RNA expression of (A) odontogenic (ALP, DSPP, BMP1, and OPN) differentiation

markers and (B) transcription factors (Osterix and Runx2) in hDPCs. The relative gene expression level was normalized

against GAPDH messenger RNA, and the control was set as 1.0. * comparison between control and OSTEO group; #

comparison between OSTEO and EMD group.
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higher level of ALP activity (Fig. 1), which suggested that EMD

facilitates the regeneration of pulp and dentine.

Alizarin Red S staining has been used for decades to

evaluate calcium-rich deposits by cells in culture.25 Thus,

Alizarin Red staining shows the presence of calcium deposits

in the extracellular matrix. The EMD group exhibited a higher

level of calcium deposits compared with the osteogenic

induction group at day 7 and day 14 (Fig. 2), which is suggested

that EMD enhanced the mineralization process.

The cell phenotype of differentiation-induced hDPCs

presents several crucial characteristics of odontoblasts, as

shown the increased ALP activity and the expression of the

odontogenic genes, such as DSPP, and osteoblastic genes, such

as ALP, BMP1 and OPN. DSPP is believed to play a regulatory

role in the mineralization of reparative dentine, and serves as

a specific marker for odontoblasts.26 Like DSPP, BMP-1 is

present in the extracellular matrix of dentine and bone as a
processed fragment.27 OPN is a secreted glycophosphoprotein

that is found in both mineralized and non-mineralized tissues.

Based on its strong inhibition of hydroxyapatite formation

in vitro, OPN is believed to play a crucial role in modulating

apatite crystal growth in bones.28

Osterix, is also an essential transcription factor for osteo-

blast differentiation and bone formation: osterix-deficient mice

were deficient in bone formation because of maturation arrest

of osteoblasts.29 Runt-related gene 2 (Runx2) is another

essential transcription factor for osteoblast differentiation

and bone formation: Runx2-deficient mice were also deficient

in bone formation because of maturation arrest of osteo-

blasts.30,31 These two transcription factors govern the critical

regulation of osteoblast differentiation and bone formation.

In the current study, ALP, DSPP, BMP1, OPN, osterix and

Runx-2 were selected as differentiation markers for odonto-

blasts in hDPCs. We observed a significant increase in ALP
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activity, mineral nodule deposition, and upregulation of

markers for odontoblastic differentiation, such as ALP, DSPP,

BMP1 and OPN in hDPCs treated with EMD. In addition, the

results also showed that essential transcription factors, such

as Runx2 and osterix, were upregulated in the EMD-treated

group compared with the OSTEO group (Fig. 3). These results

suggested that EMD plays a supplemental role in the

mineralization process of hDPCs.

The mechanism by which EMD influences the function of

pulp cells is not completely understood. In a previous report,

the function of odontoblasts or pulp cells might have been

stimulated directly by EMD to produce collagen matrix for

calcification.22 It was also suggested that transforming growth

factor-b1 or amelogenin peptides present in EMD are involved

in cell signalling to stimulate matrix formation and minerali-

zation.32,33 Recently, Kaida et al.10 reported that BMP-expres-

sing macrophages induced by EMD might play important roles

in reparative dentine formation. Further research on the

mechanisms of EMD’s effect on pulp regeneration is required.

5. Conclusions

EMD could enhance the mineralization of hDPCs and increased

the expression of markers for odontoblast/osteoblast-like cells.

Further studies are required to determine whether EMD can

improve pulp tissue repair and regeneration.
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